The impact of clouds, land use and snow cover on climate in the Canadian Prairies


TitleThe impact of clouds, land use and snow cover on climate in the Canadian Prairies
Publication TypeJournal Article
Year of Publication2016
AuthorsBetts, AK, Desjardins, R, Worth, D
JournalAdvances in Science & Research
Volume13
Start Page37
Pagination37 - 42
Date Published2016/03
Abstract

This study uses 55 years of hourly observations of air temperature, relative humidity, daily precipitation, snow cover and cloud cover from 15 climate stations across the Canadian Prairies to analyze biosphere-atmosphere interactions. We will provide examples of the coupling between climate, snow cover, clouds, and land use. Snow cover acts as a fast climate switch. With the first snow fall, air temperature falls by 10C, and a similar increase in temperature occurs with snow melt. Climatologically, days with snow cover are 10C cooler than days with no snow cover in Alberta. However the interannual variability has a larger range, so that for every 10 % decrease in days with snow cover, the mean October to April climate is warmer by 1.4 to 1.5C. Snow cover also transforms the coupling between clouds and the diurnal cycle of air temperature from a boundary layer regime dominated by shortwave cloud forcing in the warm season to one dominated by longwave cloud forcing with snow cover. Changing agricultural land use in the past thirty years, specifically the reduction of summer fallowing, has cooled and moistened the growing season climate and increased summer precipitation. These hourly climate data provide a solid observational basis for understanding land surface coupling, which can be used to improve the representation of clouds and land-surface processes in atmospheric models.

URLhttp://alanbetts.com/workspace/uploads/bettsetal2016-asr-13-37-2016-56fa734396217.pdf
DOI10.5194/asr-13-37-2016
Refereed DesignationRefereed
Status: 
Published
Attributable Grant: 
RACC
Grant Year: 
Year5
Acknowledged VT EPSCoR: 
Ack-No