

Law of the Minimum, Chlorophyll-Nutrient Model and Eutrophication Management

Yaoyang XU, Andrew W. Schroth, John R. Jones, Peter Isles

Courtney Giles, Jason D. Stockwell and Trevor Gearhart

yaoyan.xu@uvm.edu yaoyangxu@gmail.com

Main Points

Harmful Algal Bloom (HAB): Controlling Factors
 Chlorophyll-Nutrient Model: Origin and Advance
 Controlling Eutrophication: Nitrogen and Phosphorus
 Reducing Nutrient: Adaptation to Changing Climate

1. Harmful Algal Bloom

Factors regulating harmful algal bloom
Climate (Temperature, solar radiation)
Lake shape (Depth, volume and surface)
Basin hydrology (Water discharge)
Bottom-up effects (Nitrogen, phosphors)
Top-down effects (Zooplankton, fish)

Limnol. Oceanogr., 51(1, part 2), 2006, 351–355 © 2006, by the American Society of Limnology and Oceanography, Inc.

Eutrophication of freshwater and marine ecosystems

Val H. Smith¹ Department of Ecology and Evolutionary Biology, University of Kansas, Lawrence, Kansas 66045

1. Harmful Algal Bloom

Uncontrollable factorsClimate (Temperature, solar radiation)
Lake shape (Depth, volume and surface)
Basin hydrology (Water discharge)
Sottom-up effects (Nitrogen, phosphors)
Top-down effects (Zooplankton, fish)

1. Harmful Algal Bloom

Controllable factors

>Climate (Temperature, solar radiation)
>Lake shape (Depth, volume and surface)
>Basin hydrology (Water discharge)
>Bottom-up effects (Nitrogen, phosphors)>Top-down effects (Zooplankton, fish)

4Classic regressions: Relate mean CHL to mean TN or TP

$$log_{10}Chl = \alpha * log_{10}TN + \beta$$
 (1)

$$log_{10}Chl = \alpha * log_{10}TP + \beta$$
 (2)

The phosphorus-chlorophyll relationship in lakes^{1,2} P. J. Dillon³ and F. H. Rigler

Department of Zoology, University of Toronto, Toronto, Ontario

4Quantile regressions: Relate max CHL to TN or TP

$$log_{10}Chl = \alpha * log_{10}TN + \beta \tag{1}$$

$$log_{10}Chl = \alpha * log_{10}TP + \beta$$
 (2)

__REVIEWS REVIEWS __

A gentle introduction to quantile regression for ecologists

Brian S Cade^{1,2} and Barry R Noon³

412

Classic regression: Modeling annual/summer mean (e.g. Haven et al. 2004)

Quantile regression: Modeling upper bound (e.g. Jones et al. 2011)

4Lake Champlain dataset: 15 sampling stations (1992~2012)

4Mean Chl-TN model with effects of uncontrollable factors

 $log_{10}Chl = 0.82 * log_{10}TN - 1.52$ $r^2 = 0.101, p < 0.01$

4Max Chl-TN model without effects of other uncontrollable factors

$$log_{10}Chl_{max} = 1.61*log_{10}TN - 2.79$$

$$r^{2} = 0.962, p < 0.01$$

$$log_{10}Chl = 0.82*log_{10}TN - 1.52$$

$$r^{2} = 0.101, p < 0.01$$

4Mean Chl-TP model with effects of uncontrollable factors

 $log_{10}Chl = 0.69 * log_{10}TP - 0.25$ $r^{2} = 0.316, p < 0.01$

4Max Chl-TP model without effects of other uncontrollable factors

$$log_{10}Chl_{max} = 1.08 * log_{10}TP - 0.14$$

$$r^{2} = 0.948, p < 0.01$$

$$log_{10}Chl = 0.69 * log_{10}TP - 0.25$$

$$r^{2} = 0.316, p < 0.01$$

POLICYFORUM

ECOLOGY

Controlling Eutrophication: Nitrogen and Phosphorus

Daniel J. Conley,¹* Hans W. Paerl,² Robert W. Howarth,³ Donald F. Boesch,⁴ Sybil P. Seitzinger,⁵ Karl E. Havens,⁶ Christiane Lancelot,⁷ Gene E. Likens⁸

Eutrophication: Focus on Phosphorus

THE POLICY FORUM BY D. J. CONLEY *ET AL*. ("Controlling eutrophication: Nitrogen and phosphorus," 20 February, p. 1014) advocates expensive and unnecessary nitrogen (N) control in lakes.

Eutrophication: Model Before Acting

IN A RECENT POLICY FORUM ("CONTROLLING eutrophication: Nitrogen and phosphorus," 20 February, p. 1014), D. J. Conley *et al.* made a controversial case for a dual nutrientreduction strategy to address eutrophication in lakes, estuaries, and coastal areas.

Eutrophication: Time to Adjust Expectations

D. J. CONLEY *ET AL*. ("CONTROLLING EUTROphication: Nitrogen and phosphorus," Policy Forum, 20 February, p. 1014) advocate a shift in strategies to control eutrophication of aquatic systems. We agree that the best hope for success rests with strategies couched in a systems perspective and founded on an understanding of interactions among biogeochemical cycles.

Eutrophication: More Nitrogen Data Needed

WE AGREE WITH D. J. CONLEY *ET AL*. ("CONtrolling eutrophication: Nitrogen and phosphorus," Policy Forum, 20 February, p. 1014) that there are many compelling reasons for controlling agricultural and industrial sources of nitrogen. In many areas, nitrate and ammonium are

4Hypothesis (H1): The response of CHL to TN is raised by TP? **4**Hypothesis (H2): The response of CHL to TP is raised by TN?

Sub- dataset	TP	Samples	Sub- dataset	TN	Samples
P1	$0.7 \le Log_{10} (TP) < 1.0$	187	N1	$2.04 \le Log_{10} (TN) < 2.45$	214
P2	$1.0 \le Log_{10} (TP) < 1.1$	516	N2	$2.45 \le Log_{10} (TN) < 2.50$	233
P3	$1.1 \le \text{Log}_{10} (\text{TP}) < 1.2$	527	N3	$2.50 \le Log_{10} (TN) < 2.55$	479
P4	$1.2 \le Log_{10} (TP) < 1.3$	335	N4	$2.55 \le Log_{10} (TN) < 2.60$	556
P5	$1.3 \le Log_{10} (TP) < 1.4$	233	N5	$2.60 \le Log_{10} (TN) < 2.65$	521
P6	$1.4 \le Log_{10} (TP) < 1.5$	178	N6	$2.65 \le Log_{10} (TN) < 2.70$	269
P7	$1.5 \le Log_{10} (TP) < 1.6$	223	N7	$2.70 \le Log_{10} (TN) < 2.75$	123
P8	$1.6 \le Log_{10} (TP) < 1.7$	226	N8	$2.75 \le Log_{10} (TN) < 2.80$	95
P9	$1.7 \le Log_{10} (TP) < 1.8$	152	N9	$2.80 \le Log_{10} (TN) < 2.85$	64
P10	$1.8 \le Log_{10} (TP) < 2.4$	121	N10	$2.85 \le Log_{10} (TN) < 3.24$	144

Hypothesis (H1): True Increase in TP enhance phytoplankton response to TN (Slope, α_{TN})

 $\alpha_{TN} = 1.63 * log_{10}TP - 0.68$ $r^2 = 0.897, p < 0.01$

4Hypothesis (H2): True Increase in TN enhance phytoplankton response to TP (Slope, α_{TP})

$$\alpha_{TP} = 2.60 * log_{10}TN - 5.87$$

 $r^2 = 0.941, p < 0.01$

4Hypothesis (H1): True Increase in TP enhance phytoplankton response to TN (Slope, α_{TN})

4Hypothesis (H2): True Increase in TN enhance phytoplankton response to TP (Slope, α_{TP})

> Dual-nutrient control would be more effective than phosphorus-only reduction to mitigate eutrophication in Lake Champlain

CLIMATE

Blooms Like It Hot

Hans W. Paerl¹ and Jef Huisman²

A link exists between global warming and the worldwide proliferation of harmful cyanobacterial blooms.

Resilience to Blooms

Justin D. Brookes¹ and Cayelan C. Carey²

Managing nitrogen and phosphorus pollution of fresh water may decrease the risk of cyanobacterial blooms, even in the face of warming temperatures.

4Hypothesis (H3): The response of CHL to TN is raised by WT? **4**Hypothesis (H4): The response of CHL to TP is raised by WT?

_	Sub-dataset	WT	Samples
	T1	$2.7 \leq WT < 12.5$	364
	T2	$12.5 \leq WT < 14.0$	165
	T3	$14.0 \le WT < 15.5$	183
	T4	$15.5 \leq WT < 17.0$	192
	T5	$17.0 \le WT < 18.5$	266
	T6	$18.5 \leq WT < 20.0$	264
	T7	$20.0 \leq WT < 21.5$	399
	Т8	$21.5 \le WT < 23.0$	390
	Т9	$23.0 \leq WT < 24.5$	320
_	T10	$24.5 \leq WT < 29.0$	155

+Hypothesis (H3): True Increased temperature enhance phytoplankton response to nitrogen (Slope, α_{TN})

 $\alpha_{TN} = 0.084 * WT + 0.039$ $r^2 = 0.612, p < 0.01$

+Hypothesis (H4): True Increased temperature enhance phytoplankton response to phosphorus (Slope, α_{TP})

+Hypothesis (H3): True Increased temperature enhance phytoplankton response to nitrogen (Slope, α_{TN})

+Hypothesis (H4): True Increased temperature enhance phytoplankton response to phosphorus (Slope, α_{TP})

> Tightening nutrient reduction helps mitigate the climate-driven eutrophication, and improve lake adaptation to changing climate

Main Points

Harmful Algal Bloom (HAB): Controlling Factors
 Chlorophyll-Nutrient Model: Origin and Advance
 Controlling Eutrophication: Nitrogen and Phosphorus
 Reducing Nutrient: Adaptation to Changing Climate

Acknowledgements

r m o

n t

 $C \cap R$

e

yaoyan.xu@uvm.edu yaoyangxu@gmail.com