Macroeconomic Modeling

Bill Gibson

The University of Vermont

PTAC 28 November 2017

・ 一 ・ ・ ・ ・ ・ ・

ヨート

• IMPLAN data familiar to city and regional planners

- IMPLAN data familiar to city and regional planners
- CGE can be customized to region

- IMPLAN data familiar to city and regional planners
- CGE can be customized to region
- Sector and structure

- IMPLAN data familiar to city and regional planners
- CGE can be customized to region
- Sector and structure
- Detailed down to zip-code

/⊒ ► < ∃ ►

- IMPLAN data familiar to city and regional planners
- CGE can be customized to region
- Sector and structure
- Detailed down to zip-code
- Link to land use to determine K load

- IMPLAN data familiar to city and regional planners
- CGE can be customized to region
- Sector and structure
- Detailed down to zip-code
- Link to land use to determine K load
- As a function of market incentives as well as taxes and subsidies

The source of data: IMPLAN

э

IMPLAN Data-15 Agricultural sectors

Industry Code	Description	Employment	Output	Employee Compensation	Proprietor Income	Other Property Type Income	Tax on Production and Imports
1	Oilseed farming	5.3	\$2,233,767	\$14,205	\$618,972	\$182,455	\$1,477
2	Grain farming	85.3	\$17,428,144	\$372,123	\$1,321,565	\$2,047,645	\$45,429
3	Vegetable and melon farming	23.2	\$2,838,348	\$568,963	\$1,026,021	\$623,616	(\$4,628)
4	Fruit farming	634.4	\$31,788,380	\$9,008,087	\$10,657,824	\$5,842,251	(\$108,202)
5	Tree nut farming	0.9	\$77,627	\$25,517	\$21,600	\$16,037	(\$263)
6	Greenhouse, nursery, and fl	447.7	\$38,907,619	\$13,163,711	\$9,561,628	\$4,588,951	(\$68,633)
10	All other crop farming	4,534.4	\$154,130,722	\$42,427,078	\$29,319,557	\$16,914,555	(\$411,209)
11	Beef cattle ranching and far	1,118.4	\$93,570,000	\$2,404,099	\$15,676,780	\$10,381,357	(\$3,788,179)
12	Dairy cattle and milk produc	2,530.9	\$676,005,005	\$42,311,279	\$140,384,552	\$65,767,632	\$10,093,094
13	Poultry and egg production	105.7	\$44,462,376	\$3.448.658	\$4,832,829	\$1,836,456	\$207,142
14	Animal production, except c	197.3	\$13,249,627	\$1,418,388	\$4,872,167	\$1,135,541	\$245,185
15	Forestry, forest products, an	47.7	\$3,031,430	\$219,101	\$923,053	(\$34,253)	\$58,129
16	Commercial logging	1,940.4	\$110,292,633	\$9,581,410	\$34,954,811	(\$984,164)	\$1,979,409
18	Commercial hunting and tra	91.7	\$2,788,779	\$0	\$572,421	\$0	\$311,337
19	Support activities for agricult	1,474.0	\$58,137,283	\$17,848,267	\$10,327,865	\$9,893,364	\$729,662

359 Non-agricultural sectors

Industry Code	Description	Employment	Output	Labor Income	Total Value Added	Output Per Worker	Labor Income Per Worker
0	Total	428,286.8	\$61,429,761,680	\$20,273,012,861	\$30,596,413,610	\$0	\$0
1	Agriculture	13,237.3	\$1,248,941,741	\$407,882,530	\$535,383,723	\$94,350	\$30,813
2	Mining	1,425.4	\$369,092,781	\$46,834,414	\$241,121,501	\$258,940	\$32,857
3	Construction	30,041.3	\$4,354,450,684	\$1,311,833,612	\$1,428,984,510	\$144,949	\$43,668
4	Manufacturing	34,771.2	\$13,541,968,834	\$2,208,965,006	\$2,706,275,769	\$389,459	\$63,529
5	TIPU	16,703.5	\$4,996,434,215	\$1,059,226,082	\$2,062,054,475	\$299,124	\$63,413
6	Trade	54,695.4	\$5,845,345,749	\$2,191,767,244	\$3,659,147,949	\$106,871	\$40,072
7	Service	220,940.8	\$26,339,550,254	\$9,262,229,739	\$15,462,150,540	\$119,215	\$41,922
8	Government	56,471.9	\$4,733,977,423	\$3,784,274,234	\$4,501,295,145	\$83,829	\$67,012

・ロト ・ 日 ・ ・ ヨ ・ ・ 日 ・ ・

æ

• Social Accounting Matrix SAM as data base

・ 同 ト ・ ヨ ト ・ ヨ ト

- Social Accounting Matrix SAM as data base
- Loosely based on Walrasian model of general economic equilibrium

・ 同 ト ・ ヨ ト ・ ヨ ト

- Social Accounting Matrix SAM as data base
- Loosely based on Walrasian model of general economic equilibrium
- Wide variety of assumptions on how out of equilibrium adjustment takes place

・ 同 ト ・ ヨ ト ・ ヨ ト ・

- Social Accounting Matrix SAM as data base
- Loosely based on Walrasian model of general economic equilibrium
- Wide variety of assumptions on how out of equilibrium adjustment takes place
- Limited appeal to dynamic optimization as in DSGE

・ 同 ト ・ ヨ ト ・ ヨ ト

 Must have stock-flow relationship

Y Economy passes through a series of dynamic SAMs

time

э

- Must have stock-flow relationship
- Updated at each sweep of the model

Economy passes through a series of dynamic SAMs

time

(人間) (人) (人) (人) (人) (人)

Y

- Must have stock-flow relationship
- Updated at each sweep of the model
- Calibrated to time series

Economy passes through a series of dynamic SAMs

time

(4 同) (4 日) (4 日)

Y

- Must have stock-flow relationship
- Updated at each sweep of the model
- Calibrated to time series
- Must account for tech change and productivity growth

Economy passes through a series of dynamic SAMs

time

< 同 > < 回 > < 回 >

Y

Model in Excel and GAMS

				0 1.86266766									
producer prices													
	Activitities				Firms								_
Activities	Agr	Fst	Dev	Ag	Fst	Dev	C	I	G	ED	EF	Total	
Ag.				832.3	19.7	2.4						854	
Fst				0.0	150.4	0.0						150	
Dev				0.0	0,0	36414.7						36415	
Ag	131.1	2.0	444.3				72	5	- 4	344	28	1030	
Fat	61.9	41.5	123,6				10	0	2	31	10	280	
Dev	309.1	33.7	16588,1				16191	5132	4432	15634	1823	60142	
VA	352.2	73.1	19258.7									19684	
WORKS	76.9	17,8	11613,5									11708	
dividends	261.7	52.3	6105.3									6419	
transfers							515	3199	3053	138		6904	
sovinos							4458		1631	3950	2076	12115	
Indirect toxes							1406					1406	
Tower	13.6	3.0	1530.0				2380	3779	5252			12967	
novrall tax	94	22	1423.5									1435	•
comorote toyer	4.2	0.8	116.4									121	
Tee D				147	52	10907						20006	
Tro-E				51	57	3820						2037	
Tetal	954	150	24415	1020	280	60142	25022	10115	14979	20004	2027	5757	
Tota	0.04	150	30410	1030	2.00	34100	20032	01131	14373	20090	3937	1 0	1
Firm parameters							HH parameters				Phosphorus	se	
Tax rates							direct tax rate	t_h	0,10	\$/m clarity	16.80		
payroll taxes	0.12	0.12	0.12					-		m clarity/phos	-23.44	4.78	P coef.
corporate	0.016	0.016	0.019				Frisch:		150	Toitial P	48.71	0.37	
605	275.3	55.3	7645.2				LES intercepts:	theta 1	24.04	•			
conital shape (B)	0 781643748	0 756142771	0 39697397					theto 2	3.50	Londuse			
annos note (w)	1	1	1					theto 3	5396.9	40	Developed	Forest	Total P
mork-up (tou)	0.45	0.55	0.21				manningl man	m 1	0.0044	18 73	4.16	77.11	1
act tox note (tind)	-0.0471	0.1806	0.0869				to concurse	m 2	0.0006	2.43	0.078	0.16	0.0035008
lebon coefficient (I)	0.09	0.12	0.32				To consume		0.9949	6.45	2.270	0.10	0.7755776
noine cente (cete)	0 499777522	0.45	0.92						0 1049				
prime coars (cars)	0.000777552	0,035	0.035					8_M	0,1900				
uepreciation (dep)	0.030	0.035	0.030					m_1	0.0227				

æ

• Short-run: Contributes to aggregate demandm Y

▲圖▶ ▲屋▶ ▲屋▶

э

- Short-run: Contributes to aggregate demandm Y
- Long-run: Contributes to capacity, Q

・ 戸 ・ ・ ヨ ・ ・ ヨ ・

- Short-run: Contributes to aggregate demandm Y
- Long-run: Contributes to capacity, ${\it Q}$
- Population flows also affect capacity

・ 同 ト ・ ヨ ト ・ ヨ ト

- Short-run: Contributes to aggregate demandm Y
- Long-run: Contributes to capacity, Q
- Population flows also affect capacity
- u = Y/Q

▲ 同 ▶ ▲ 国 ▶ ▲ 国 ▶ …

э

- Short-run: Contributes to aggregate demandm Y
- Long-run: Contributes to capacity, Q
- Population flows also affect capacity
- u = Y/Q
- Model stationary values of *u*

・ 戸 と ・ ヨ と ・ モ と …

- Short-run: Contributes to aggregate demandm Y
- Long-run: Contributes to capacity, Q
- Population flows also affect capacity
- u = Y/Q
- Model stationary values of *u*
- This is the basic approach

伺 と く ヨ と く ヨ と

Equilibrium in the short run

A = intermediates, C = consumption, I = investment, M = imoprts, G = govt, X = exports, Q = capacity, AD = demand

Change in capital

K = capitalstock

・日・ ・ ヨト・

문 🛌 문

Change in labor

L = labor

Bill Gibson

Change in capacity

•
$$Q(K_t, L_t) \rightarrow Q(K_{t+1}, L_{t+1})$$

æ

- $Q(K_t, L_t) \rightarrow Q(K_{t+1}, L_{t+1})$
- With AD growth equal to growth in Q

▲圖 ▶ ▲ 臣 ▶ ▲ 臣 ▶ ...

э

- $Q(K_t, L_t) \rightarrow Q(K_{t+1}, L_{t+1})$
- With AD growth equal to growth in Q
- *u* remains constant

▲圖 ▶ ▲ 国 ▶ ▲ 国 ▶ →

э

- $Q(K_t, L_t) \rightarrow Q(K_{t+1}, L_{t+1})$
- With AD growth equal to growth in Q
- *u* remains constant
- Model raises exogenous components of aggregate demand

・ 戸 ・ ・ ヨ ・ ・ ヨ ・ ・

- $Q(K_t, L_t) \rightarrow Q(K_{t+1}, L_{t+1})$
- With AD growth equal to growth in Q
- *u* remains constant
- Model raises exogenous components of aggregate demand
- Until *u* is stationary

・ 同 ト ・ ヨ ト ・ ヨ ト …

Nominal GDP in Vermont

・ロン ・部 と ・ ヨ と ・ ヨ と …

æ

Real GDP in Vermont

*ロト *部ト *注ト *注ト

э

House Prices in Franklin County

æ

Impact of Irene

Bill Gibson University of Vermont æ

Economic impacts of Global Warming

Potential economic damages are shown at the county level in a scenario in which emissions of greenhouse gases continue at current rates. Green indicates areas that could see economic benefits. To see an interactive version of this map, click here. *Histara*, *kop*, *uia*, *Riving*, *et al*, *Science*

Bill Gibson University of Vermont

・ロト ・回ト ・ヨト ・ヨト

• Internal migration in the US intense

▲御▶ ▲理▶ ▲理≯

э

- Internal migration in the US intense
- Driven by oil price in the 1980s

・ 同 ト ・ ヨ ト ・ ヨ ト

- Internal migration in the US intense
- Driven by oil price in the 1980s
- Gave way to the Sunbelt phenomenon

- Internal migration in the US intense
- Driven by oil price in the 1980s
- Gave way to the Sunbelt phenomenon
- Population will drive everything

/⊒ ▶ < ∃ ▶ <

- Internal migration in the US intense
- Driven by oil price in the 1980s
- Gave way to the Sunbelt phenomenon
- Population will drive everything
- Scaling laws are key to understanding the impact

• Rural urban mobility accelerating

イロン イロン イヨン イヨン

э

- Rural urban mobility accelerating
- by 2050 50 percent of popuation of Earth in cities.

э

- Rural urban mobility accelerating
- by 2050 50 percent of popuation of Earth in cities.
- Traditional sectors, agriculture, mining and manufacturing

< 回 > < 回 > < 回 >

- Rural urban mobility accelerating
- by 2050 50 percent of popuation of Earth in cities.
- Traditional sectors, agriculture, mining and manufacturing
- Scale sub-linearly with urban growth

・ 同 ト ・ ヨ ト ・ ヨ ト

- Rural urban mobility accelerating
- by 2050 50 percent of popuation of Earth in cities.
- Traditional sectors, agriculture, mining and manufacturing
- Scale sub-linearly with urban growth
- Services scale sub-linearly with urban growth

伺 ト イヨト イヨト

- Rural urban mobility accelerating
- by 2050 50 percent of popuation of Earth in cities.
- Traditional sectors, agriculture, mining and manufacturing
- Scale sub-linearly with urban growth
- Services scale sub-linearly with urban growth
- Tourism income elastic...depends on discretionary income

伺 ト イヨト イヨト

- Rural urban mobility accelerating
- by 2050 50 percent of popuation of Earth in cities.
- Traditional sectors, agriculture, mining and manufacturing
- Scale sub-linearly with urban growth
- Services scale sub-linearly with urban growth
- Tourism income elastic...depends on discretionary income
- Scales superlinearly

• Fixed coefficients depending on practices

・ 同 ト ・ ヨ ト ・ ヨ ト

- Fixed coefficients depending on practices
- Gross delivery-not yet connected to lake model

伺 ト く ヨ ト く ヨ ト

- Fixed coefficients depending on practices
- Gross delivery-not yet connected to lake model
- Repsonsive to change in sectoral composition

- Fixed coefficients depending on practices
- Gross delivery-not yet connected to lake model
- Repsonsive to change in sectoral composition
- Use same coefficients as Asim-2007

- Fixed coefficients depending on practices
- Gross delivery-not yet connected to lake model
- Repsonsive to change in sectoral composition
- Use same coefficients as Asim-2007
- Doesn't factor in TMDL

- Fixed coefficients depending on practices
- Gross delivery-not yet connected to lake model
- Repsonsive to change in sectoral composition
- Use same coefficients as Asim-2007
- Doesn't factor in TMDL
- Also held constant

■▶ ■ のへの

Thank you!

・ロト ・ 日 ・ ・ モ ・ ・

≣⇒

æ

Questions, suggestions?