EPSCoR Data Webinar

Declan McCabe, Saint Michael's College Biology

www.uvm.edu/epscor/redir/streamsprojectdata

What we will cover:

- Data sources
- Data grooming
- Data presentation

What we may get to:

- Powerpoint tips
- Poster templates

Land use

- Land use data available for all 2012 sites
- Streams project site:

www.uvm.edu/epscor/redir/streamsprojectdata

Site Code	Location	Stream Type	Participating Organization	Monitoring Year	Catchment Area Acres	Agricultural Acres	Percent Catchment Agricultural	Urban Acres	Percent Catchment Urban	Forested Acres	Perce Catchm Forest
CTWW_WtsRv_804	Bradford, VT	Riffle	Oxbow High School	2012-2013	27304.22	896.99	0.033	370.36	0.014	25155.46	0.921

Water temperature expectations

- It varies far less than air temperature
- Peaks lag behind air temp peaks
- Summer water temp cooler than air; reverse in winter
- Water from springs: temp = annual average air temp and very stable
- Other questions: Urban/agricultural/forested; before/after storms – hypotheses to test

Water temperature expectations

- It varies far less than air temperature
- Peaks lag behind air temp peaks
- Summer water temp cooler than air; reverse in winter
- Water from springs: temp = annual average air temp and very stable
- Other questions: Urban/agricultural/forested; before/after storms – hypotheses to test

Summary air temperature data

- <u>http://www.nws.noaa.gov/climate/xmacis.ph</u>
 <u>p?wfo=btv</u>
- Click "Local data records"
- Look under "Climate graphs" for Burlington temperature

Air temperature

 Confirm that your stream temperature probe is not measuring air temperature:

Dota updated through 18 JAN 2013

Detailed air temperature data

http://cdo.ncdc.noaa.gov/qclcd/QCLCD?prior=N

 7 Vermont NOAA weather stations: Barre; Bennington; Burlington; Morrisville; Rutland; Saint Johnsbury; Springfield

• Data go back to mid 2000s; every 15 minutes; precipitation and other parameters available

Temperature probe: raw data

Important data

- First graph:
 - Scatter graph
 - Date on X axis
 - Temperature on Y

	А	В	С	D	E	F	-
1	1-Wire/iBu	tton Part N	Number: DS	1921G-F5			
2	1-Wire/iBu	utton Regist	tration Nun	nber: F9000	00002E338	221	_
3	Is Mission	Active? tru	ie				
4	Mission St	art: Fri Aug	31 12:45:0	0 EDT 2012	2		
5	Sample Ra	te: Every 6	0 minute(s)				
6	Number of	f Mission Sa	amples: 43	0			
7	Total Sam	oles: 430					
8	Roll Over E	Enabled? fa	alse				
9	Roll Over O	Occurred?	Roll over ha	as NOT occ	urred		
10	Active Alar	ms: None	fired				
11	Next Clock	Alarm At:	Disabled				
12	High Temp	erature Ala	arm: 85 °C				
13	Low Temp	erature Ala	rm: -40 °C				
14							
15	Date/Time	Unit	Value				
16	########	С	25				
17	########	С	27.5				
18	########	С	26				
19	########	С	26				
20	########	С	28.5				
21	########	С	27.5				
22	########	С	27				
23	########	С	27.5				-
	(▶ ▶ 09	18 2012	WR SIBR	K 7∏ 4 🗌		▶ []	

Quick graph

- Units are degrees
 Celsius
- Delete column B (units)
- Highlight data (and headings)
- "Insert"; "Scatter graph"

	А	В	С	D	
1	1-Wire/iButton Part Numb	er: DS1921(G-F5		
2	1-Wire/iButton Registratio	n Number:	F90000002	E338221	
3	Is Mission Active? true				
4	Mission Start: Fri Aug 31 12	2:45:00 EDT	2012		
5	Sample Rate: Every 60 min	ute(s)			
6	Number of Mission Sample	s: 430			
7	Total Samples: 430				
8	Roll Over Enabled? false				
9	Roll Over Occurred? Roll o	ver has NO	T occurred		
10	Active Alarms: None fired				
11	Next Clock Alarm At: Disat	oled			
12	High Temperature Alarm: 8				
13	Low Temperature Alarm: -	40 °C			
14					
15	Date/Time	Value			
16	8/31/2012 12:45	25			
17	8/31/2012 13:45	27.5			
18	8/31/2012 14:45	26			
19	8/31/2012 15:45	26			
20	8/31/2012 16:45	28.5			
21	8/31/2012 17:45	27.5			
22	8/31/2012 18:45	27			
23	8/31/2012 19:45	27.5			Ļ
	0/21/2012 20:45 ▶ ₩ 09_18_2012_WR_	SIBRI 4			
Ave	rage: 20589.76563 Count: 20 S	um: 370615.78	13 🖽 🗆	100%	

Scatter graph: quick look-see quality

Data grooming

- Identify & fix mistakes
- Toss out erroneous data
- Example 1:
- Probe above water
- Good probe test though ^(C)

Example 1 continued

- Same graph with air data deleted!
- Increased variability in latter 5 days
- Realistic?
- Check weather reports

What to measure

- You have far more raw temperature data than anyone should present ⁽²⁾
- What to choose?
- Narrow your date ranges
- Suggestions: Average; minimum; maximum; range
- Please don't feel limited by the suggestions!

Temperature response variables in Excel

 Average *"=average(B120:B375)" –* calculates average of numbers in cells B120 through B375

Temperature response variables in Excel

 Average *"=average(B120:B375)" –* calculates average of numbers in cells B120 through B375

- Maximum *"=max(B120:B375)"*
- Minimum *"=min(B120:B375)"*

Temperature response variables in Excel

 Average *"=average(B120:B375)" –* calculates average of numbers in cells B120 through B375

- Maximum *"=max(B120:B375)"*
- Minimum *"=min(B120:B375)"*

• Range = Maximum – minimum

Accessing gage data

 Link: <u>http://nh.water.usgs.gov/</u>

Click on the map

Click on the station nearest you

Water chemistry data

- <a>www.uvm.edu/epscor/redir/streamsprojectdata
- TSS; Total P; Total N
 - Select sites; date range; & TSS or P & N
 - "generate report"
- Thanks to Katie and Saul for keeping ahead of the sample load!
- You are welcome to use data from any and all sites and years

Phosphorus & Nitrogen

Click on the variable titles below to view a definition of that variable.

Export to Excel File

Site Code	Location	Туре	Participating Organization	Date Collected	Replicate	Phosphorus (µg/L)	Nitrogen (µg/L)	Comments
LCD_EngBrk_117	Burlington, VT	Riffle	Rock Point School	2012-09-07	1	35.605	559.509	
LCD_EngBrk_117	Burlington, VT	Riffle	Rock Point School	2012-09-07	2	47.426	573.686	
LCD_EngBrk_117	Burlington, VT	Riffle	Rock Point School	2012-09-07	3	41.125	483.849	
LCD_EngBrk_117	Burlington, VT	Riffle	Rock Point School	2012-10-16	1	8.251	844.689	
LCD_EngBrk_117	Burlington, VT	Riffle	Rock Point School	2012-10-16	2	17.945	807.123	
LCD_EngBrk_117	Burlington, VT	Riffle	Rock Point School	2012-10-16	3	17.945	734.280	
LCD_EngBrk_117	Burlington, VT	Riffle	Rock Point School	2012-10-26	1	19.883	840.779	
LCD_EngBrk_117	Burlington, VT	Riffle	Rock Point School	2012-10-26	2	19.067	966.538	
LCD_EngBrk_117	Burlington, VT	Riffle	Rock Point School	2012-10-26	3	7.440	814.178	

Phosphorus & Nitrogen

Click on the variable titles below to view a definition of that variable.

Site Code	Location	Туре	Participating Organization	Date Collected	Replicate	Phosphorus (µg/L)	Nitrogen (µg/L)	Comments
LCD_EngBrk_117	Burlington, VT	Riffle	Rock Point School	2012-09-07	1	35.605	559.509	
LCD_EngBrk_117	Burlington, VT	Riffle	Rock Point School	2012-09-07	2	47.426	573.686	
LCD_EngBrk_117	Burlington, VT	Riffle	Rock Point School	2012-09-07	3	41.125	483.849	
LCD_EngBrk_117	Burlington, VT	Riffle	Rock Point School	2012-10-16	1	8.251	844.689	
LCD_EngBrk_117	Burlington, VT	Riffle	Rock Point School	2012-10-16	2	17.945	807.123	
LCD_EngBrk_117	Burlington, VT	Riffle	Rock Point School	2012-10-16	3	17.945	734.280	
LCD_EngBrk_117	Burlington, VT	Riffle	Rock Point School	2012-10-26	1	19.883	840.779	
LCD_EngBrk_117	Burlington, VT	Riffle	Rock Point School	2012-10-26	2	19.067	966.538	
LCD_EngBrk_117	Burlington, VT	Riffle	Rock Point School	2012-10-26	3	7.440	814.178	

Water chemistry tips

- Phosphorus = 0??
- This means it was below the detection limit

What to present

Average; inter-site comparisons; multi-site comparisons

Macroinvertebrate data

- Please upload what you have
- SMC-generated data are available
- Past year's data 2008-2012 available
- Same web site:
- <a>www.uvm.edu/epscor/redir/streamsprojectdata
- Select *Macroinvertebrate ID2*
- Copy and paste to excel

Macroinvertebrate variables

- Richness (number of species)
- In excel: *=COUNTIF(G22:G410,">0")*

Macroinvertebrate variables

- Richness (number of species)
- In excel: *=COUNTIF(G22:G410,">0")*

- Dominance (relative abundance of numerical dominant)
- In excel: *=MAX(G22:G410)/SUM(G22:G410)*

Macroinvertebrate variables

- Richness (number of species)
- In excel: =*COUNTIF(G22:G410,">0")*
- **Dominance** (relative abundance of numerical dominant)
- In excel: =*MAX(G22:G410)/SUM(G22:G410)*
- EPT Richness (Mayflies; stoneflies; caddisflies)
- Use richness formula on the EPT rows

For any response variable

Options:

- 2-site comparison:
- use separate samples as replicates

Multi-site questions:

• Sum bug samples from single site to make 1 representative sample (before calculations)

More on this:

http://www.nature.com/scitable/knowledge/library/sam pling-biological-communities-23676556

• Average water quality samples

2-site comparison: Figures

- Data form:
- Raw data:
- What to graph:

• Excel formula:

ilparison. Figures					
	Dominance				
	Allen Brook	Foster Brook			
	0.25		0.13		
	0.38		0.09		
	0.29		0.14		
	0.41		0.18		
	Allen Brook	Foster Brook			
Average:	0.33		0.14		
Std deviation	0.08		0.04		

=stdev(A12:A15)

Making bar graphs

	Dominance	
	Allen Brook	Foster Brook
	0.25	0.13
	0.38	0.09
	0.29	0.14
	0.41	0.18
	Allen Brook	Foster Brook
Average:	0.3325	0.135
Std deviation	0.075	0.03696846

Making bar graphs

	Dominance	
	Allen Brook	Foster Brook
	0.25	0.13
	0.38	0.09
	0.29	0.14
	0.41	0.18
	Allen Brook	Foster Brook
Average:	0.3325	0.135
Std deviation	0.075	0.03696846

2-site comparison: Figures

2-site comparison: Figures

Multi-site comparison

•	Data form:			Average
		Stream	%Forested	Richness
	-	LCD_EngBrk_117	0.18	6.883333
•	Average the	LCD_PoBrk_133	0.183	6.971429
	response variables	LCD_BrtltBrk_139	0.242	7.466667
	at each site	LCD_IndBrk_323	0.563	11.3125
		LCD_LwsCrk_227	0.681	13.85714
•	OR	WR_SIBrk_711	0.987	14.11111

• Max; min; range

Making scatter plots

• Highlight data

• Insert scatter

		Average
Stream	%Forested	Richness
LCD_EngBrk_117	0.18	6.883333
LCD_PoBrk_133	0.183	6.971429
LCD_BrtltBrk_139	0.242	7.466667
LCD_IndBrk_323	0.563	11.3125
LCD_LwsCrk_227	0.681	13.85714
WR_SIBrk_711	0.987	14.11111

Making scatter plots

• Highlight data

• Insert scatter

		Average
Stream	%Forested	Richness
LCD_EngBrk_117	0.18	6.883333
LCD_PoBrk_133	0.183	6.971429
LCD_BrtltBrk_139	0.242	7.466667
LCD_IndBrk_323	0.563	11.3125
LCD_LwsCrk_227	0.681	13.85714
WR_SIBrk_711	0.987	14.11111

Richness

Figure 1. Taxonomic richness of macroinvertebrates compared to the proportion of the water shed that is forested.

Powerpoint suggestions

- Acknowledgements on first slide
- Black text on bright background works
- 32 point font displays well; turn off Autofit & Auto Formatting
- Few words
- Practice timing (avoid the big hook)

Posters

- Make a powerpoint slide:
- 4' wide; 3' high
- Use "snap-to" function for alignment
- Get high-resolution school logos (not from your school web site)

• Thanks for attending.

Thanks also to: Lindsay; Katie; Saul; Miranda