

Japanese Knotweeds Effect on Erosion Rates in Riparian Corridors

EMILY SECOR

UNIVERSITY OF VERMONT

ADVISOR: DON ROSS & COURTNEY BALLING

Japanese Knotweed

(Fallopia japonica)

- Member of buckwheat family
- Native to Eastern Asia
- **Habitat:** Along streams and rivers, in moist low-lying and disturbed areas.
- Introduced to the U.S. as an ornamental on estates in the 1800s

Why is it a problem?

- Rhizomal propagation
- Fragile root structure
- Allelopathic properties
- Monoculture

Hypothesis

JAPANESE KNOTWEED WILL INCREASES THE RATE OF EROSION IN RIPARIAN CORRIDORS DUE TO ITS ALLELOPATHIC PROPERTIES AND FRAGILE ROOT STRUCTURE.

Site Locations

- Mad River
- 3 different buffers

2- Knotweed

2-Forested

• 2-Bare Bank

- All eroding river banks
- 10 mile long transect

Methods

- Erosion Pins = 2 ft long rebar
- 5 Pins hammered into eroding bank
- Covered a width of 5m
- Measure receding bank
 - Periodic interval or after rain storm

Figure 1: Receding bank measurement over time compared to three different buffer types.

Erosion in Bank Profile

Figure #3: Shows the difference in erosion locations compared to vegetative buffer

Source of Error

Figure #3: Oneway ANOVA determined that there is a statistical difference in bank retreat between buffer types ($F_{(2,271)}=11.7713$, P=0.0002*). The Turkey-Kramer means comparison also determined that both a bare stream bank and Japanese Knotweed buffer are significantly different than a forested buffer.

Conclusion

JAPANESE KNOTWEED DOES INCREASE THE RATE OF EROSION AND SHOULD BE HELD TO THE SAME URGENCY OF RESTORATION AS A BARE BUFFER.

References

- Child, L.E. and P.M. Wade. 2000. The Japanese Knotweed Manual: The Management and Control of an Invasive Alien Weed. Packard Publishing Limited, West Sussex, UK.
- Couper, P. (2000). Insights into river bank erosion processes derived from analysis of negative erosion-pin recordings: Observations from three recent uk studies. *Earth Surface Processes and Landforms*, *59-79*.
- Department of Natural Resources and Parks Water Land Resources Division, (2008). *Invasive knotweeds. Retrieved from King County website: www.kingcounty.gov*
- Driesche, R. Forest Health Technology Enterprise Team, (2002). Forest health technology enterprise team, 612-614.
- Environment Agency, (2006). The knotweed code of practice. Almondsbury, Bristol: Environment Agency.
- Parkinson, H. (2010). Biology, ecology and management of the knotweed complex. *Montana State University,*

Questions

