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A Mutant ofParamecium Defective in Chemotaxis

Abstract. In an effort to study the sensory-motor pathway of chemotaxis in Para-
mecium tetraurelia, I have generated mutants defective in their responses to chem-
icals. One mutant in particular, d4-530, is repelled by sodium acetate, which attracts
normal paramecia by klinokinesis. The mutant is repelled by the mechanism ofortho-
kinesis. To my knowledge, this is the first report of orthokinesis in chemotaxis of
paramecia.

Swimming and avoiding reaction are
the two main components of behavior in
Paramecium. Jennings (I) first described
the avoiding reaction as a transient back-
ing away from a stimulus, turning, and
renewed forward swimming in a ran-

domly chosen direction. This corre-
sponds to normal ciliary beating, tran-
sient reversal of the ciliary beat, and a
return to normal beating, respectively.
We now understand a great deal about
the membrane potential control of this

behavior in the wild type (2) and in be-
havioral mutants defective in membrane
electrogenesis (3).

Paramecia combine these two behav-
iors, swimming and avoiding reaction, in
the more complex behavior of chemotax-
is, or more accurately, chemokinesis (4).
In chemokinesis, paramecia accumulate
near or escape from the vicinity of cer-
tain chemicals. They accomplish this by
modulating either the frequency of
avoiding reaction (klinokinesis) or the
velocity of forward swimming (ortho-
kinesis) (4): an increase in frequency of
avoiding reaction or increased velocity
in a solution will cause repulsion from
that solution and a decreased frequency
of avoiding reaction or decreased veloci-
ty will cause attraction.
A genetic approach was used to dis-

sect the chemosensory pathway. I de-
scribe here d4-530, a mutant of Para-
mecium tetraurelia that is repelled by
sodium acetate, which attracts normal
paramecia (5, 6). Previously, the mech-
anism of chemokinesis in Paramecium
was believed to be solely klinokinesis
(1, 7). However, d4-530 is repelled
from sodium acetate by orthiokinesis,
and, to my knowledge, this is the first
report of orthokinesis in Paramecium
chemokinesis.

The response of paramecia to chemi-
cals was measured by a T-maze assay,
designed to present a test and control so-
lution to a population of animals (5). The
number of animals swimming into the
arm with the test solution divided by the
number of animals swimming into both
test and control solution arms of the T
gives an index of chemokinesis (Iche). An
I.he > 0.5 indicates attraction to the test
solution relative to the control;
II.he < 0.5 indicates repulsion from the
test solution into the control solution.
Mutant d4-530 is defective in chemo-
kinesis, and by this assay, it was similar
to the wild type in response to all chem-

lWild type d4530

KCI vs. NaCI vs. NaCI vs. NaCI vs. NaCI vs. KCI vs.
KOAc NaOAc NH4CI KCI Na-lactate Quinidine
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Fig. 1. Chemokinesis assayed by means of a T-maze (5). The index of
chemokinesis (Iche) is defined as the number of animals in the test arm
divided by the number of animals in both the test and control arms of
the T. An Iehe > 0.5 denotes attraction; Ihe < 0.5 denotes repulsion
from the test solution. All solutions included salts indicated in the
chemokinesis buffer described in Table 1. The first solution under the
histogram fills the control arm and all of the maze except the test arm;
the second solution fills the test arm. (a) to (e) Concentrations are 5
mM of salt indicated; (f) concentrations are 0.1 mM quinidine hydro-
chloride or KCI. KOAc, potassium acetate; NaOAc, sodium acetate.
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ical attractants tested, except to acetate
relative to chloride (see Fig. 1). Potas-
sium acetate was not an attractant to d4-
530, but was a strong attractant to the
wild type (Fig. la); sodium acetate acted
as a repellent to d4-530, but as an attrac-
tant to the wild type (Fig. lb). The mu-

tant may also be defective in its response
to lactate. The response to sodium lac-
tate relative to NaCI (Fig. le) was weak-
er attraction than for the wild type, but it
was within the wild type range.

Mutant d4-530 was more weakly re-

pelled than the wild type by quinidine
hydrochloride (Fig. 1f0; however, it can
be normally repelled. The repulsion from
quinine hydrochloride, the optical iso-
mer of quinidine hydrochloride, in Dryl's
solution (8) was equivalent to re-

pulsion of the wild type (che =

0.01 + 0.01 and 0.06 + 0.04, respective-
ly). It was normally attracted to KCI and
to NH4Cl relative to NaCl (Fig. 1, c and
d) and was not repelled by sodium lac-
tate relative to NaCl (Fig. le). There-
fore, sodium and acetate must have a

synergistic effect on d4-530 to cause such
a drastic change in behavior from the
wild type.

This mutant (d4-530) has an associated
behavioral phenotype, that is, it is a par-
tial "paranoiac" (9). It shows the same

forward swimming as the wild type, but
the avoiding reaction is sometimes pro-
longed and the cells swim backward for 1

to 15 seconds. However, it does not
show this behavior frequently. After a 5-
minute incubation in 5 mM NaCl chemo-
kinesis solution, a solution that stimulat-
ed paranoiac behavior (5, 9), none of d4-

\
0

n_ _
13° r, ~

1 2 3 4 5 6 7

Time (min)

Fig. 2. Frequency of avoiding reactions in
NaCl and sodium acetate solutions. The num-
ber of avoiding reactions in 1-minute intervals
(FAR) is plotted versus the minute ending the
interval. Animals were incubated in 5 mM
NaCl chemokinesis solution for 30 minutes
and transferred to depressions of 5 mM NaCl
or 5 mM sodium acetate solution. Data are av-
erages from 20 cells. Closed circles and closed
squares, 5 mM NaCl test solution; open cir-
cles and open squares, 5 mM sodium acetate;
circles, wild type; and squares, d4-530.
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530 and none of the wild type cells
showed long backward swimming, while
87 percent of full paranoiac d4-90 cells
were swimming backward.
The paranoiac phenotype is not suf-

ficient by itself to change chemokinesis
behavior; d4-90 showed normal re-

sponses to attractants and repellents
(Table 1). The response to sodium lac-
tate, a weak attractant to the wild type,
showed wide variation that cannot pres-

ently be explained. More importantly,
d4-90 was not repelled by, but was nor-

mally attracted to, sodium acetate after
transfer from NaCl.
The two components of behavior,

avoiding reaction and velocity of for-
ward swimming, are both under mem-

brane potential control. Hyperpolar-
ization decreases the frequency of action
potentials and increases ciliary beat fre-
quency; depolarization increases fre-
quency of action potentials and de-
creases ciliary beat frequency (10). The
action potential causes a transient ciliary
reversal, the avoiding reaction. There-
fore, a solution that hyperpolarizes de-
creases the frequency of avoiding reac-
tions and tends to cause attraction by kli-
nokinesis. The hyperpolarization in this
solution will also increase velocity and
tend to cause repulsion by orthokinesis.
The opposite effects occur with depolar-
ization. Therefore, klinokinesis and or-

thokinesis are at odds in Paramecium.
In order to determine the mechanism

of attraction and repulsion, I measured
frequency of avoiding reaction and ve-

locity of forward swimming in test and
control solutions (11). Cells were in-
cubated 30 minutes in control solution
and were transferred singly to depres-
sions of test or control solution. The fre-
quency of avoiding reaction was meas-

ured by observation of individual cells in
depressions while recording each avoid-
ing reaction on an event recorder. Veloc-
ity was also measured after a 30-minute
incubation in control solution. Long-ex-
posure, dark-field photomacrographs
(12) of the cells after transfer to test or
control solution show lines in the paths
of the swimming animals. Measurements
of the path lengths were used to calculate
the average velocity (13).
Wild type animals are attracted to so-

dium acetate by klinokinesis. Figure 2
shows the frequency of avoiding reaction
of the wild type after transfer from 5 mM

NaCl solution to either 5 mM sodium
acetate or 5 mM NaCl. Frequency of
avoiding reaction decreased in acetate
solution relative to the chloride control,
which is consistent with attraction by kli-
nokinesis. However, wild type animals

in the same solutions still swam slightly
faster 15 minutes after transfer to acetate
than to chloride (0.96 + 0.22 mm/sec,
N = 14; 0.77 ± 0.21 mm/sec, N = 15,
respectively). Nakatani found similar in-
creases in velocity in attractants of P.
caudatum (14). This is consistent only
with repulsion from acetate by ortho-
kinesis. Therefore, the wild type must
respond to the attractant sodium acetate
by klinokinesis.
Mutant animals are repelled from so-

dium acetate by orthokinesis. Figure 2
shows the frequency of avoiding reaction
in sodium acetate and NaCl solutions af-
ter transfer from NaCl. One expects an
increased frequency of avoiding reaction
in sodium acetate relative to NaCI for the
mutant to be repelled by classical kli-
nokinesis. Instead, the frequency of
avoiding reaction dropped to almost zero
in sodium acetate. The animals swam
significantly faster in sodium acetate so-
lutions (0.96 + 0.16 mm/sec, N = 16;
0.64 ± 0.14 mm/sec, N = 8) even after
15 minutes. They are repelled by swim-
ming faster in sodium acetate, that is, by
orthokinesis.
Mutant d4-530 gave fewer avoiding re-

actions than the wild type in both NaCI
and sodium acetate solutions (Fig. 2).
However, the differences between the
number of avoiding reactions in sodium
acetate and in NaCl at the initial time
points were greater for d4-530 than for
the wild type. It is not yet clear whether
it is the difference between the frequency
of avoiding reaction in test and control
solutions or the magnitude of frequency
of avoiding reaction in test solution that
is important in determining whether

Table 1. Chemokinesis of paranoiac d4-90 in
the T-maze assay. Data are averages of the
number of experiments (N) ± I standard de-
viation. Abbreviations: KOAc, potassium
acetate; NaOAc, sodium acetate; Dryl, Dryl's
solution.

Con-
trol Test
solu- solutiontt cIhe N
tion*

(5 mM)
KCI KOAc 0.72 ± 0.05 4
NaCI NaOAc 0.71 + 0.12 8
NaCI NH4CJ 0.90 ± 0.07 4
NaCI KCI 0.80 ± 0.16 8
NaCI Na-lactate 0.54 ± 0.26 16
Dryll 0.15mM 0.08 + 0.10 7

quinine-
HCI in
Dryl

*Solutions contain the salts indicated and I mM tris,
I mM citric acid, and I mM Ca(OH)2, pH 7.05.
tThe concentration of all test solutions was 5 mM
unless otherwise indicated. tDryl solution con-
tains I mM Na2HPO4, I mM NaH2PO4, 1.5 mM
CaC12, and 2 mM sodium citrate, pH 7 (8).
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klinokinesis or orthokinesis will prevail.
There is a simple explanation for the

aberrant behavior of mutant d4-530
based on a model of membrane potential
control of chemokinesis (15). A hyper-
polarization of the wild type in sodium
acetate relative to NaCI would account
for a decreased frequency of avoiding re-
action and an increased velocity in the
attractant. The decreased frequency of
avoiding reaction (klinokinesis) domi-
nates and the animals are attracted. A
larger hyperpolarization of mutant d4-
530 in sodium acetate relative to NaCl
would account for the even greater de-
crease in frequency of avoiding reaction
and increase in velocity in sodium ace-
tate. However, the increase in velocity
(due to both the increased ciliary beat
and the decrease in time spent backing in
the avoiding reaction) dominates and the
cells are repelled by orthokinesis. Pre-
liminary experiments show that the wild
type does hyperpolarize in sodium ace-
tate and that the mutant hyperpolarizes
to a greater extent (16).
The discovery of orthokinesis of mu-

tant d4-530 has led to other examples of
repulsion by orthokinesis and to the de-
velopment of a model for membrane po-
tential control of chemokinesis (15, 16).
A mathematical model is needed to de-
termine the contribution from velocity
and frequency of avoiding reaction, and
hence, the dominance of klinokinesis or
orthokinesis.

JUDITH VAN HOUTEN*
Department ofBiological Sciences,
University ofCalifornia,
Santa Barbara 93106
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about equal in number, but in most cases
a single on-off ganglion cell receives in-
put from only one type of amacrine cell.
A very few cells apparently are influ-
enced by both types.
The studies reported here were carried

out in a perfused mud puppy eyecup
preparation, which has been previously
described (4). Intracellular recordings
were first obtained while perfusing the
eyecup with a normal Ringer solution.
After impalement and stabilization of in-

tracellular recordings, the perfusate was

changed to a test solution.
Figure 1 shows recordings obtained

from three different on-offganglion cells.
In most recordings only the excitatory
postsynaptic potentials (EPSP's) and
IPSP's are evident, since impulse activi-
ty was usually abolished by depolariza-
tion caused by injury from electrode pen-
etration (4). This recording condition
usually obscured the EPSP's but en-
hanced the IPSP's, which are the promi-
nent responses of the recordings. The
cell illustrated in Fig. la was exposed to
strychnine (10-5M) for 90 seconds,
which enhanced the IPSP's and also
made the EPSP's more apparent. After
the exposure to strychnine, a solution
containing picrotoxin (10-5M) perfused
the eyecup and completely abolished the
IPSP's within 2 minutes, leaving on and
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Amacrine Cells in Necturus Retina: Evidence for Independent
y-Aminobutyric Acid- and Glycine-Releasing Neurons

Abstract. About one-half of on-off ganglion cells have inhibitory postsynaptic
potentials (IPSP's) which are blocked by strychnine, while the remainder have
IPSP's which are blocked by picrotoxin or bicuculline. These antagonists do not
abolish light activity of the presynaptic inhibitory neuron, the amacrine cell. The
existence of separate y-aminobutyric acid- and glycine-releasing amacrine cells is
implied by these results.
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