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1. INTRODUCTION

Every organism has sensory systems designed to extract information from
its environment and to transduce this information into a useful form that trig-
gers a response. When the external information is a chemical or a mixture of
chemical cues, the sensory process is referred to as *‘chemoreception’ and
can range from taste and smell, familiar to all of us, to the attraction of motile
bacteria. The incentive for reviewing chemoreception in this chapter comes
from the relatively recent, rapid developments in the understanding of signal
transduction in a multitude of systems, including photoreception, mitogenesis,
and chemoreception. Therefore this chapter is devoted to chemosensory signal
transduction, i.e. , the conversion of chemical cues into intracellular messengers
that provide useful information to the receptor cell and hence to the organism
about its chemical environment.

A. Chemicals as Primary Messengers

There is no overall unifying theme among the chemical stimuli that are utilized
in chemosensory transduction, but within this confusion of compounds there
is order because each stimulus fits into the context of the life of the organism:
Sugars attract bacteria that ferment them; folic acid attracts paramecia and
slime mold amoebae that feed on the stimulus source, bacteria; amino acids
attract lobsters and catfish that prey on muscle; pheromones (or pheromone
blends) unique to insect or protozoan species attract their own for mating.

The participation of chemical compounds as primary messengers subjects
chemosensory transduction to constraints that do not exist for photosensory
or mechanosensory transduction. For a stimulus to be effective it must be
transient [Atema, 1987]. If a stimulus remains in place too long, the sensory
system will adapt, become insensitive to the presence of the stimulus, and
stop responding. Unlike light or touch, when the source of the stimulus is
removed, chemical stimuli remain. Therefore, there must be a means of des-
troying the signal, including enzymes to degrade the chemical stimulus, proteins
to bind it, and the endocytosis of receptor-ligand complexes (see section II.E)

B. Diverse Chemosensory Systems and Responses

The chemosensory systems commonly studied are diverse and their responses
varied. In unicellular organisms, detection and transduction of chemical sig-
nals brings about the changes in the cells’ motility apparatuses that allow bac-
teria and protozoa to accumulate at sources of nutrients or to escape nonoptimal
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environments; allow-slime mold amoebae to crawl to seek food or to aggre-
gate for development into a multicellular slug; facilitate the meeting of sperm
and egg or cells of different mating type; or, considering circulating blood cells
as honorary unicellular systems, mediate the migration of leukocytes to sites of
infection. In metazoans, chemoreception underlies the sensory processes of
taste, smell, and common chemical sense that in turn facilitate the processes
of identifying (safe) food sources, mates, and sites for settling on substrates.
The behavioral mechanisms by which the organisms achieve the same ends of
the chemosensory pathway—location of food, for example—can range from
indirect movement by biased random walk (klinokinesis) to direct crawling or
swimming up a gradient of chemical stimulus (chemotaxis).

One solution to covering sensory transduction with all this diversity would
be to focus on general, common aspects. Therefore this chapter attempts to
survey many of these systems in order to make emerging, common themes
apparent.

C. Common Pathways of Reception and Transduction

While wide-ranging, chemoreception systems do have many aspects in com-
mon, particularly at the cellular and molecular levels. They all appear to be
initiated at the membrane surface of a receptor cell by the interaction of a
stimulus with a receptor molecule (or perhaps in some cases the membrane
directly) and subsequent transduction of this interaction into intracellular mes-
sengers. The second and third messengers are limited in number and for the
most part are recruited from cyclic nucleotides, permeant ions, phosphoino-
sitides, diacylglycerol, arachidonic acid, and internal pH levels. It is becom-
ing increasingly apparent that GTP-binding proteins (G proteins) mediate at
least some of this transduction. Therefore receptors, internal messengers, and
transduction mechanisms are discussed in turn in order to examine common
themes with variations among diverse chemosensory systems.

I1. RECEPTORS
A. Bacteria

Bacterial chemoreceptors mediate a change in flagellar motion that biases
the individual cell's random walk and indirectly causes a population of bacte-
ria to accumulate in attractant stimuli or disperse away from repellents. In the
most extensively studied bacteria, Escherichia coli, Salmonella typhimurium,
and Bacillus subtilis, the cells swim smoothly in response to attractants (with
flagella rotating counterclockwise) and in a “‘tumbly,” frequently turning
response to repellents (with flagella rotating clockwise with each tumble). The
general scheme of things is shown in Figure 1, taken from an overview by
Parkinson [1988]. Bacterial chemoresponse is treated in depth in this volume
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Fig. 1. Schematic of information transfer in bacterial chemoresponse. Ligand (*) binds to
receptor, which signals the presence of ligand by way of cheW to cheA by enhancing the
autophosphorylation of A (nonphosphorylated states are O and phosphorylated states are ¢ ). The
phosphates on A proteins are then physically transferred from A to Y and B. Activated (phos-
phorylated) Y interacts with the motor to promote clockwise (CW) rotation and tumbling. Z
functions to inactivate the signal by receiving phosphates from Y (or A, not shown). cheB and
cheR affect the adaptation state of the receptor by adding or removing methy! groups. [Reproduced
from Parkinson, 1988, with pcrmission of the publisher.]

by M. Eisenbach. However, because such a great deal is known about protein
components of the bacterial chemoresponse pathway, bacterial chemorecep-
tion is also included in this chapter, especially for the purposes of comparison
to other, often lesser known systems.

The 20 or so receptors for Esch. coli and the highly homologous receptors
in Sal. typhimurium fall into two classes: those carrier proteins loosely asso-
ciated with the membrane and found in the periplasmic space and those intrin-
sic membrane proteins that also serve as transducers. Within this latter group
are four proteins that have been referred to as ‘‘MCPs’* (methyl-accepting che-
motaxis proteins) and are known as the products of the ts7, tar, trg, and tap
genes (Fig. 2). The aspartate receptor (MCP II) serves as a good example
from which to generalize. This one MCP mediates both aspartate and maltose
chemoresponse by slightly different mechanisms.

The aspartate receptor resides in the membrane as a dimer of Tar proteins
[Milligan and Koshland, 1988], each with two membrane-spanning groups, a
periplasmic domain with ligand-binding sites and a cytoplasmic domain with
its sites for signal transduction and covalent modification [Russo and Koshland,
1983]. The bacterial aspartate and other MCP receptors fall into a family of
**simple’* receptors, including the epidermal growth factor (EGF), nerve growth
factor (NGF), low-density lipoprotein (LDL), and insulin receptors based on the
small number of transmembrane-spanning regions through which information
about binding of ligand to the extracellular domain must be conveyed to the
interior of the cell [Mowbray and Koshland, 1987]. Using site-directed muta-
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Fig. 2. The receptors and membrane signal transducing proteins of E. coli. The gene names for
the methyl-accepting chemotaxis proteins (MCPs) are given in italics. (The sensory transduc-
tion pathway for phosphotransferase sugars joins with these transduction pathways downstream
of the MCPs). [Reproduced from Adler, 1987, with permission of the publisher.}

genesis to create sites of disulfide crosslinking, Falke and Koshland {1987} have
manipulated the aspartate receptor. From their studies, the protein appears to be
flexible, and the binding of aspartate directly to the Tar protein induces ‘ ‘global’’
conformation changes from the periplasmic domain through the membrane-
spanning region to the cytoplasmic domain to facilitate intracellular signalling
and adaptation. (The nature of the signalling is discussed in section IV.)
Adaptation is thought to occur through the methylation of the glutamate
moieties of the receptor’s cytoplasmic domain. A truncated aspartate receptor
that is missing these iesidues can signal but cannot adapt [Russo and Koshiand,
1983]. These glutamate residues become accessible to a methyltransferase fol-
lowing the binding-induced conformation change [see Adler, 1987, for a review].
The number of methyl groups on the MCP is a function of the nature of the
stimulus (attractant stimuli increase the number of methy! groups over basal
levels; repellent stimuli decrease this number) and the concentration of the
stimulus. With the addition of more (but not saturating) stimulus such as the
attractant aspartate, the number of methyl groups increases in an additive fash-
jon [Mowbray and Koshland, 1987], with the consequences that the MCP stops
transducing and the response adapts. Removal of aspartate leads to a rapid -
removal of methyl groups until basal levels are again attained (Fig. 3). In the
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Fig. 3. Schematic of signaling and adaptation with maltose and aspartate: a vertical slide model.
A: The unstimulated receptor is shown with an external domain that is responsible for ligand
binding, two transmembrane segments, and a cytoplasmic domain that can send a signal and be
methylated. The glutamic acid groups are symbolized here by the unmethylated OH groups to
emphasize the net change of methylation in the following steps. B: The conformational change
induced by the binding of aspartate causes the transmembrane region to be pulled up slightly
(shown as three notches) into the external space. This in turn causes an alteration of the cyto-
plasmic portions (shown here as 3 compression against the membrane), which brings about changes
in the signaling region (indicated by the jagged line) and in the methylation region (indicated by
the exposure of the OH groups of the relevant glutamic acids). As a result, the aspartate-bound
receptor becomes more highly methylated, which somehow releases the stress at the signaling
site caused by binding of aspartate. C: At the new steady state, the methylation sites are suffi-
ciently modified to bring the structure back to the nonsignaling mode, even though aspartate
remains bound to the protein. D: The receptor adapted to maltose is shown bere. The binding of
maltose-binding protein, charged with its own ligand, at a different site has effects similar to
those of aspartate, but smaller in degree (.., the transmembrane segment is moved oaly one
notch). E: When both maltose and aspartate are bound, the effects are greatest (four notches),
with adaptation occurring at the highest levels of methylation. An additional state, shown in F,
exists when the attractant is removed from the methylated protein. This receptor sends a signal
that is opposite in polarity to the one previously described. [Reproduced from Mowbray and
Koshland, 1987, with permission of the publisher.}

interim, the cell responds behaviorally as though it has been exposed to a
negative or repellent stimulus. This titration of methyl groups is thought to
reset the system in an unchanging environment so that it is poised to respond
to a change in stimulus concentration, even a change riding on top of a back-
ground level of stimulus. '

The number of methyl groups on MCPs is kept in balance by the actions of
a methyltransferase (CheR product) and an esterase (CheB product). A mutant
in either cheR or cheB genes renders a bacterium defective in chemoresponse.
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Curiously, the double mutant does retain some chemoresponse, bringing into
question the role of methylation and adaptation in chemoresponse [Stock and
Stock, 1987). In particular, double mutants accumulate in capillaries of aspar-
tate where they arrive by diffusion and move by smooth swimming and
methylation-independent partial adaptation up the steep concentration gradi-
ent at the mouth of the capillary [Weiss et al., 1990]. Serine, which does not
elicit any adaptation, also does not elicit any accumulation of the double mutant
in capillaries, despite the presence of functional receptors and other sensory
transduction components in the double mutant. It appears that the methylation-
dependent adaptation that resets the response system is required for the
chemoresponse to shallow gradients of stimuli and that without methylation
only weak responses to very steep gradients of a few stimuli, such as aspar-
tate, are operative.

The Esch. coli aspartate receptor also mediates the response to the attract-
ant maltose. Maltose binds to its receptor, maltose-binding protein (MBP),
one of the class of receptors that is found in the periplasmic space [see Brass,
1986, for a review of such proteins]. The ligand—receptor complex in turn
binds to the aspartate receptor at a site probably distinct from that for aspar-
tate binding {Mowbray and Koshland, 1987]. From a study of combined and
separate responses to aspartate and maltose, Mowbray and Koshland [1987]
conclude that there most likely is only one population of receptors that medi-
ates both responses. Maltose-MBP, like aspartate, induces global MCP con-
formation changes that signal to the cell interior and make glutamates available
for methylation. However, the number of methyl groups added under saturat-
ing stimulus conditions is lower and the order of priority of the methylation of
sites is different from the aspartate response. A model that takes the conclu-
sions of Mowbray and Koshland into account is shown in Figure 3.

As mentioned above, the MCPs fall into the class of chemoreceptors that
includes intrinsic membrane proteins. Joining this class are the phosphotrans-
ferase sugar transport proteins that mediate both the transport of and chemo-
response to mannose and glucose [Lengeleretal., 1981]. The as yet unknown
adaptation mechanism of these receptors does not involve methylation, and
one prospect is the phosphorylation that regulates their transport function
{Postma and Lengeler, 1985; Taylor et al., 1988). The MCP-dependent and
-independent systems do seem to share common requirements for the che ¥,
che W, and che A proteins and presumably a significant portion of the chemo-
sensory transduction pathway [Taylor et al., 1988).

Like Esch. coli, Bac. subtilis is attracted to aspartate and phosphotransferase
(PTS) sugars. However, there are many significant differences between the
two bacterial systems [Thoekle et al., 1990). The PTS sugars act through MCPs
in B. subtilis and elicit a turnover of methyl groups on all the MCPs concur-
rently and fairly uniformly. Aspartate, which in Esch. coli affects the methyl-



72 Van Houten

ation state of its MCP receptor only, causes changes in methyl distribution on
the three MCP species, but not uniformly as do the PTS sugars. The methylation/
adaptation of Bac. subtilis differs from that of Esch. coli in that attractants
stimulate demethylation and repellents stimulate no methylation change in
MCPs. Additionally, there can be methyltransfer among one class of MCPs
and between intermediates and other classes of MCPs [Thoelke et al., 1987;
Beadle et al., 1988). These observations hint that the methylation modifica-
tions may subserve different or additional functions from originally envisioned.

There are still other interesting chemoresponses of bacteria to oxygen, for
example [Shioi et al., 1987; Taylor et al., 1988], that cannot be dealt with
here. Likewise there are other bacteria with equally interesting responses, such
as Caulobacter in which MCP synthesis is controlled in time and space within
the cell [Nathan et al., 1986) and photosynthetic bacteria such as Rhodobacter
sphaeroides and Rhodospirillum rubrum in which there are methylation-
independent and -dependent chemoresponses and a role for transport in che-
moreception [Ingham and Armitage, 1987; Sockett et al., 1987; Armitage,
1988, 1990). Rhodob. sphaeroides offers an interesting contrast to the enteric
bacteria. because its chemoattraction is limited to chemoeffectors and cations
that are transported and do not interact with MCPs [Armitage, 1990]. The
attractant stimuli (no repellents have been identified) induce increased swim-
ming speed and decreased stopping not directly by alteration of proton motive
force or pH;, but the responses do require transport and metabolism of the
stimuli, implying interaction of the metabolic intermediates with the flagellar
motor or acting as second messengers.

B. Neutrophils

Polymorphonuclear neutrophil leukocytes (PMNs) crawl their way to sites
of inflammation from infection or wounds. They use as chemotactic stimuli
fragments of complement such as C5a and fragments of bacterial proteins such
as N-formyl-methionyl-leucyl-phenylalanine (FMLP); leukotriene B4;and a
multitude of other endogenous and exogenous factors that diffuse from the
inflammation site and set up a concentration gradient for the cells to follow
[see Allen et al., 1988, for a review of stimuli]. At the site, in response to a
higher concentration of stimuli than elicits chemotaxis, the PMNs release hy-
drolytic enzymes and superoxide that serve both to kill the infectious agent and
to release more attractant stimuli. Most research on leukocyte chemotaxis has
centered around FMLP and C5a as ligands, and therefore this discussion focuses
primarily on the FMLP and the analogous C5a receptor-mediated transduction
that causes cells to orient, polarize, migrate up concentration gradients, and
secrete cytotoxic agents.

Receptors for FMLP and C5a have been identified by affinity crosslinking
as integral membrane proteins of 50,000--60,000 and 40,000 M,, respectively
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[Niedel and Cuatrecasas, 1980a,b; Rollins and Springer, 1985; see Allen et
al., 1988, and Painter et al., 1984, for reviews]. There are ~60,000 FMLP
receptors elaborated on the plasma membrane and at least as many inside the
ceil. These glycoproteins are found minimally in two isoforms that can be
separated by M, (50,000 and 60,000) and by pI (6.0 and 6.5, respectively),
even when their substantial component of carbohydrate is removed. There may
be even more isoforms within the two pl classes, because affinity labeling of
receptor with radioiodinated FMLP characteristically results in a broad band
of labeled protein from 50,000 to 60,000 M; on gels [see Allen et al., 1988,
and Sha'afi and Molski, 1988, for reviews].

Apparently one heterogeneous set of FMLP receptors (K4 0.6 nM [Sklar et
al., 1984a,b]) mediates both chemotaxis and superoxide release, even though
these responses differ in EDsg by one order of magnitude or more {Allen et
al., 1988; Lohr and Snyderman, 1982; Yuli et al., 1982]. This difference in
concentration dependence may reflect the different percentages of occupied
receptors necessary to elicit each response {Painter et al., 1984; Sklar et al.,
1987). There is an alternative view that the different EDsgs reflect the two
receptor affinity states and that the receptors in the high-affinity state mediate
chemotaxis and those in the low-affinity state mediate other responses [Lohr
and Snyderman, 1982; see Sklar et al., 1987, for discussion]. Both views allow
for receptor affinity modulation with ligand binding, but the percent occu-
pancy view would have the high-affinity state uncoupled from response, pre-
paratory to down-regulation.

The different views arise in part because the FMLP-binding sites are highly
dynamic, changing affinity, number, mobility, and distribution with ligand
occupancy, guanine nucleotides, and methylation. Figure 4 represents a model
that accounts for the effects of stimulation on receptor affinity and distribu-
tion. Upon stimulation with FMLP, bound receptors release the associated G
protein in an active form that continues the signal transduction process (see
section HI). The receptor-ligand complex now changes affinity to become a
very slowly dissociating, almost irreversibly bound form that is no longer cou-
pled to the G protein, but is associated with the cytoskeleton [Painter et al.,
1987; Jesaitis et al., 1984]. Its lateral movement to a different lipid domain
and its association with the cytoskeleton are sensitive to cytochalasin D but
not to pertussis toxin (a G protein inhibitor) or to guanyl nucleotides [Painter
etal., 1987; Jesaitis et al., 1984]. The high-affinity receptors of the cytoskeleton-
enriched fraction are still capable of interaction with G proteins, and the lat-
eral segregation of these receptors into membrane regions poor in G proteins
suggests a mechanism for desensitization and response termination [Jesaitis
et al., 1989]. These desensitized receptors should correspond to the form Sklar
et al. [1989] measure in real time as “LRX."" These receptors are high affin-
ity, not G associated, insensitive to pertussis toxin, and derived from “LR,"’
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Fig. 4. A schematic of chemoattractant (¢.g., FMLP) stimulation of neutrophils. Note the mul-
tiple states of receptors, including association with the cytoskeleton, G protein interactions with
PLC and generation of multiple second messengers, many of which are not shown here as less
than essential for activation. (From Allen et al., 1988, with permission.)

a lower affinity form that is generated when the G protein subunits rapidly
dissociate from the receptor once it is bound with ligand (**LRG"").

Dissociation of the G proteins from the LRG complex is essential for the
rapid (<1 min) segregation of the receptors to the cytoskeleton-associated, G
protein—depleted membrane domain, because toxins have no effect while the
GDP analog GDPBS drastically reduces association of receptor with cyto-
skeleton [Sarndahl et al., 1989]. Presumably, dissociation of the G proteins
reveals an actin-binding site that allows association of the receptor with the
actin filaments of the cytoskeleton. The half-life of the transient association of
the receptor with the cytoskeleton is ~50 sec, similar to that for the internal-
ization of receptor [Jesaitiset al., 1984; Painter et al., 1984). There is a loss
of receptor number and sensitivity during chemotaxis for which this internal-
ization may be responsible in part. Likewise, internalization may be a neces-
sary process in the orientation of receptors during chemotaxis by replacing
external receptors with new or cryptic ones primarily at the leading edge of
the cell {Zigmond and Sullivan, 1979; Sullivan and Zigmond, 1982].

The model is based on acute stimulation with 1 aM FMLP for 2 min. Chronic
stimulation, i.e., stimulation at lower temperatures that prevent endocytosis
and secretion with 100 aM FMLP for 2060 min, renders cells desensitized,
unresponsive to FMLP yet still able to produce superoxide in response to phorbol
ester [Jesaitis et al., 1986, 1988a,b]. As witl.x acute stimulation, the occupied
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receptors of desensitized cells convert to a high-affinity, very slowly dissoci-
ating form, still at the cell surface but now associated with cytoskeleton and
in a different membrane domain from the G proteins. The relationship of these
high-affinity binding sites in desensitized cells to the receptor isoforms dis-
cussed above is not yet clear, although in acutely stimulated cells the high-
affinity sites associated with the cytoskeleton seem to be the 50,000-60,000
M proteins [Painter et al., 1987]. -

Homologous desensitization in chronically stimulated neutrophils appears to
result from the physical separation of the surface receptor from the G proteins
that are essential for transduction. Certainly internalization of receptors also is
occurring, but the conversion of surface receptors to an almost isreversibly
bound and sequestered form probably accounts for most of the desensitization
process, because the ability of preincubated cells to respond to FMLP is relative
to the number of surface receptors not complexed with the cytoskeleton [Jesaitis
et al., 1986). Densensitization could also involve covalent modification in addi-
tion to sequestration, as for the B-adrenergic receptor in its control of adenylate
cylase [Sibley et al., 1987]. However, there is no evidence for covalent modi-
fication with desensitization of the neutrophil receptor at this time.

This model, shown in Figure 4, is only a starting point. Filling in more
details will require answers to the following questions. Is receptor occupancy
all important, or are there functioning, G protein—associated receptors with
different affinities that mediate different responses (chemotaxis vs. supefox-
ide production and secretion)? As sequelae: Is there only one population of
receptors that interconvert by guanine nucleotides between high- and low-affinity
and thereby between different functions [Painter et al., 1987]? What is the
function of the unoccupied receptor found associated with the cytoskeleton in
unstimulated cells? (Its Kq of 1 nsM curiously correlates with the EDs of
chemotaxis, while the Kq of cytoskeleton-free receptors correlates with the
EDs, of superoxide production [10 nM] [Allen et al., 1988].) Regardless of
the answers, it will be important to know whether there is only one type of G
protein associated with FMLP receptors and, if so, how one second effector
produces several different responses to the same stimulus [see Sha'afi and
Molski, 1988, for discussion]. :

Eventually a comprehensive model of neutrophil chemoresponse must account
for the mechanism by which cells respond over several orders of magnitude of
FMLP concentration and shift half-maximal responses to higher concentrations
with prestimulation (somewhat similar to the bacterial adaptation system) [Sklar
etal., 1984a,b; Seligmannetal., 1982]. The neutrophils detect a 1%—-2% drop
in FMLP concentration across the cell, and the model must take this restriction
on receptor occupancy into account {Zigmond and Sullivan, 1979; Sullivan and
Zigmond, 1982]. (As Zigmond {1989] points out, desensitization of receptors
sets transduction and levels of second messengers back to basal levels and allows
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the neutrophil to detect changes in second messenger elicited by changes in
receptor occupancy from 200 to 400 receptors as well as from 4,000 to 4,200
receptors.) Additionally, a model must account for potentially different roles for
the two or more isoforms of the receptors and the phenomenon of priming, a
receptor-mediated process by which the FMLP receptor complement in the mem-
brane increases upon prestimulation with a variety of extrinsic or cellular factors
[sce Allen et al., 1988, for review]. Many questions surrounding neutrophil
receptors will be better resolved now that the cloning of the FMLP and C5a
receptor genes has been accomplished [Thomas et al., 1990; Coats and Navarro,
1990; Murphy et al., 1990; Gerard and Gerard, 1991; see Goldman and Goetzl,
1982; Grob et al., 1990, for still other leukocyte receptors and coexpression
of CSa, CR1, CR3, Fc, and FMLP receptors; Van Epps et al., 1990].

C. Unicellular Eukaryotes

In the category of unicellular eukaryotes are protists such as Euplotes,
Blepharisma, Paramecium, Chlamydomonas; slime molds such as Dictyostelium
discoideum; and yeast. Among these, receptors for the slime mold and yeast
mating factor have been identified, and, for the rest, putative receptors have
been described [see Van Houten and Preston, 1987, and Van Houten, 1990,
for reviews and Devreotes and Zigmond, 1988, for a comparison of Dictyo-
stelium and neutrophils].

1. Slime mold. When amoebae of D. discoideum run out of bacteria to feed
on, they begin the process of developing into a multicellular slug. In this pro-
cess, they respond to pulses of cCAMP that emanate from focal cells. The cells
migrate up the pulsatile gradient of cAMP until they can touch and aggregate
as a prelude to forming the slug. When each cell is stimulated with cAMP, itin
turn releases a pulse of CAMP (the relay) in addition to orienting and transiently
moving toward the origin of the wave of stimulus. The chemoresponse can
. therefore be divided into the orientation of the cytoskeletal motile apparatus
for chemotaxis and the activation of adenylate cyclase to produce cAMP for
the relay, and the two processes can be studied independently.

Upon starvation, the amoebae acquire cAMP receptors. These receptors
were first studied for ligand-binding properties, and, through pharmacologi-
cal studies, a fairly detailed picture of the ligand-binding site has emerged, as
chronicled by Janssens and Van Haastert [1987]. The binding sites were found
to be heterogeneous and positively cooperative (Table I). Those binding sites
associated with chemotaxis response are likely to be the high-affinity *“B"" sites
that are coupled to the guanylate cyclase that is responsible for the production
of an internal messenger for chemotaxis (Fig. 5). The “'A’” sites are thought to
be coupled with the adenylate cyclase of the cAMP relay system. Within both
classes of sites there are high- and low-affinity or fast- and slow-dissociating
sets that can interconvert in the presence of ligand, and binding to members
of both classes can be modulated by the presence of guanine nucleotides (Table
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TABLE L. Kinetic cAMP Receptor Forms Observed in D. discoideum Cells and
Isolated Membranes

Dissociation Effect of guanine
Receptor Apparent rate constant No. of sites nucleotides
form K¢ (nM) &', 577 20°0) per cell on abundancy
AH 60 4x10°! Decrease
At 450 10 x 107! 77000 " Increase
BS 6-13 43 x 1072 2,300 Decrease
BSS 6-13 4.7x1072 1,100 Decrease

Reproduced from Janssens and Van Haastert [1987], with permission of the publisher.

I). As with the neutrophil chemoattractant receptor [Sklar et al., 1984a,b],
the rate of ligand binding rather than occupancy alone may be significant for
transduction [ Van Haastert et al., 1981].

Two groups have identified the protein counterpart of a cAMP receptor by
photoaffinity labeling cells with 32P-N;-cAMP [Klein et al., 1985b; Juliani
and Klein, 1981; Thiebert et al., 1984). The protein is ~40,000 in M,, and,
despite the lack of consensus about the size, it is agreed that the protein is a
phosphoprotein existing in two phosphorylation states [Klein et al., 1986,

Fig. 5. Signal transduction pathways in Dictyostelium discoideum leading from cell surface
cAMP recepiors to the regeneration of the cAMP signal (signal relay) and 1o events of chemo-
taxis. More recent findings could add action of synag 7 gene product at the G protein (G) and
adenylate cyclase (AC) interaction and the JrgA gene product as the G protein for chemotaxis
[Snaar-Jaglaska and Van Haastert, 1988; Kesbeke et al., 1988]. {Reproduced from Newell et al.,
1988, with permission of the publisher.]
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1987b]. Once bound with CAMP, the receptors become phosphorylated (approxi-
mately seven phosphates per peptide) [Klein et al., 1987b] and consequently
shift to lower mobility on sodium dodecy! sulfate (SDS) gels.

The 40 kD protein has been purified to homogeneity [Klein et al., 1987a],
and this phosphoprotein fits several criteria for the receptor: 1) specificity for
labeling by the photoaffinity CAMP analog that parallels potency or affinity
of analogs for chemoreceptor binding; 2) appearance at the expected time in
development; 3) presence in membranes and not cytosol; and 4) nonidentity
with the phosphodiesterase that is responsible for degradation of the extracel-
lular stimulus [Klein et al., 1987b]. An additional 70 kD protein has been
identified by photoaffinity labeling [Meyers-Hutchins and Frazier, 1984]. It is
not clear how this protein relates to the 40 kD protein, but it is possible that
this represents an aggregation product of the 40 kD protein [Janssens and Van
Haastert, 1987].

As mentioned above, the adenylate cyclase of the relay and the guanylate
cyclase that produces an internal messenger for chemotaxis appear to be acti-
vated by separate sets of receptors (Fig. S). Judging from the kinetics of the
high- to low-mobility transitions of the 40 kD protein on gels, this phospho-
protein could qualify for the receptor involved with adaptation of adenylate
cyclase, but not with activation of the adenylate cyclase or either activation or
adaptation of guanylate cyclase [Janssens and Van Haastert, 1987]. There-
fore, as in the bacteria, a covalent modification of the receptor is coincident
with adaptation, a common theme of vertebrate receptors as well [Sibley and
Lefkowitz, 1985; Sibley et al., 1987].

The relationship of the phosphoprotein to the identified binding sites (Table
I) is not known at this time [Janssens and Van Haastert, 1987). cAMP is thought
to activate the relay adenylate cyclase through the ‘A’ sites, and the abun-
dance of the phosphoproteins would suggest that they represent the majority
of cAMP-binding sites, i.c., the A sites. One could extrapolate that the
phosphorylation of the 40 kD protein corresponds to the transition of *'A”’
sites from high- to low-affinity forms and that the low-affinity form no longer
activates the adenylate cyclase and thereby is responsible for adaptation of
the relay. However, the time course of transitions of the high- to low-affinity
“A’*-binding sites and the high- to low-mobility phosphoprotein do not match
[Van Haastert and De Wit, 1984; Devreotes and Sherring, 1985). A corre-
spondence of the phosphoprotein with the *“B’” sites that govern chemotaxis
seems unlikely, but has not yet been ruled out. Indeed, it is not clear whether
the forms of the surface receptor (two A and two B) represent states of the
same protein [Van Ments-Cohen and Van Haastert, 1989].

Relatively recently, screening of a cDNA library yielded cloned genes cor-
responding to cAMP receptors [Klein et al., 1988; Saxe et al., 1988; Saxe,
personal communication]. A primary amino acid sequence deduced from one
DNA clone predicts seven transmembrane-spanning regions, a2 G protein inter-
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action site, and phosphorylation sites on the C-terminal cytoplasmic tail, all
characteristics of a new member of the superfamily of receptors typified by rhod-
opsin and B-adrenergic receptors. Dictyostelium transformed with antisense con-
structs of the receptor gene do not express the mRNA for the receptor protein
and fail to aggregate and proceed through development [Klein et al., 1988]. By
following the appearance of mMRNAs from the cloned genes during Dictyosteli-
um development, the receptors for chemotaxis, relay, and developmental gene
expression will be identified, and the discussions of the number and coincidence
of receptors with binding states will soon be settled by molecular genetics. (See
Section V for new additions to this gene family.)

The Dictyostelium amoebae when feeding on bacteria and not starved are
responsive to folic acid and pteridines. Like the cAMP receptor, the folate
receptor was first characterized among the membrane folate-binding proteins
for its binding kinetics {sce Janssens and Van Haastert, 1987, for review].
There are a total of five kinetic binding site forms, and among these three
““B’* sites have a selective binding that corresponds to the specificity of
chemoresponse and therefore are likely to be the ones coupled with the guanylate
cyclase for signal transduction in chemotaxis. (The two “‘A™ sites probably
couple with the adenylate cyclase and account for the ability of folic acid to
induce cAMP in early aggregative cells.) The three ‘‘B’’ sites are intercon-
vertible with ligand binding. As with the cAMP receptors, G proteins are impli-
cated in receptor function because guanine nucleotides modulate the binding
to all five binding subtypes and folic acid modulates the binding of GTP to
cell membranes. The availability of chemoresponse mutants should facilitate
the search for the still-elusive folate receptor [Segall et al., 1987]; however, it
appears that no folate mutants to date are null mutants [Segall et al., 1988],
and it remains for techniques of gene disruption and homologous recombina-
tion to produce the necessary cell lines [Segall and Gerisch, 1989]. Altematively,
the folate receptor gene may be identified among the growing number of cAMP
receptor genes [Saxe et al., 1991].

2. Chlamydomonas. Chlamydomonas gametes begin by sticking to cells of
the complementary mating type as a prelude to mating. This sticking at first is
random, later is confined to the flagella, and then in Chlantydomonas reinhardtii
is further limited to the tips of these organelles. The species-specific agglutinin
molecules that mediate this process in Chlamydomonas and C. reinhardtii are
large (>10° kD, 228-320 nm) glycoproteins, rich in hydroxyproline, with
characteristic shaft, hook, and globular head regions [Goodenough et al., 1985;
Adairet al., 1983; Crabbendamet al., 1986]. The hook anchors the molecule in
the membrane. It is the head that shows morphological differences between +
and — mating type gametes and is essential for the agglutination mating response
[Goodenough et al., 1985, Crabbendam et al., 1986). The + and — C. rein-
hardtii mating type cells each express the corresponding + or — agglutinin
along the long axis of the flagella. After contact with the complementary gamete,
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the agglutinins accumulate at the tip, hence the * ‘tipping’* process in which the
cellscontacteach otheronly at the flagellarends. The + cellofthe pair putsouta
fertilization tube filled with polymerized actin. This tube contacts the — cell at
a swelling specifically prepared for this contact, and fusion of the cells occurs
here. The cells secrete autolysin to loosen or shed their cell walls in prepara-
tion to cell fusion [see Pasquale and Goodenough, 1987, and Musgrave and
van den Ende, 1987, for reviews and Van Ende et al., 1990, for differences
between species).

The agglutination process has set in motion a series of events. It is not clear
how the agglutinin membrane proteins signal to the cell that this series should
commence, but the adenylate cyclase is activated early in the process, and an
increase in internal cAMP is sufficient to trigger the cascade of mating responses
(Pasquale and Goodenough, 1987]. Crosslinking of the agglutinins in place
on the membrane seems essential; solubilized agglutinins or isolated flagella
interact weakly if at all [Musgrave and van den Ende, 1987]. Studies with
antibodies to the agglutinins imply that crosslinking of complementary agglu-
tinins is sufficient and that invoking the binding of agglutinins to yet other
unknown surface receptors is not necessary [Homan et al., 1987]. The N-
glucosamine sugars of the + mating type agglutinin and the O-linked oligo-
saccharide with terminal galactose residues of the — mating type agglutinin of
C. eugametos are obligatory for mating-specific binding domains [Musgrave
and van den Ende, 1987]. There is still much to discover about these aggluti-
nins that mediate this contact chemoresponse that is reminiscent of immune
cell and sperm—egg receptor-mediated interactions.

3. Ciliates. Paramecium tetraurelia responds to chemicals in solution around
it. In particular, fermentation and other bacterial products are attractants, prob-
ably signifying the presence of food [Van Houten, 1978; Van Houten and Pres-
ton, 1988]. Stimuli such as folic acid, acetate, and cAMP hyperpolarize the cells
[Van Houten, 1979], and thereby causing changes in ciliary beating: The cells
move more smoothly and turn less frequently as a consequence. This in turn
causes populations of cells to accumulate indirectly by a biased random walk,
not unlike that of the bacterial chemoresponse [Van Houten, 1978; Van Houten
and Van Houten, 1982]. The stimuli are thought to interact with the cell at
specific receptor sites, because radiolabeled stimuli bind specifically and
saturably to the cells [Schulz et al., 1984: Smith etal., 1987) and single-site
mutations eliminate both binding and chemoresponse [DiNallo et al., 1982;

[Preston and Usherwood, 1988]. .
One candidate receptor has been partially purified. A doublet of cAMP-
binding proteins from cell body membranes shows an elution profile from cAMP
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affinity columns that would be expected for the receptor {Van Houten et al.,
1990]. A protein of the same M, (48,000) can be labeled by 32p.N;-cAMP
photolysis of whole cells. Covalent linking of N3-cAMP to whole cells speci-
fically eliminates chemoresponse to cAMP and not to other stimuli, implying
that the receptor should be among the proteins crosslinked with this photo-
affinity analog [Van Houten et al., 1991). Both bands of the doublet are gly-
cosylated, and other covalent modifications remain to be determined, as does
the relationship between the two proteins. Total amino acid analysis is consistent
with the two proteins having one origin at the gene level. Most importantly,
polyclonal antibodies produced against this doublet specifically block chemo-
response to folate, and the preimmune serum does not (Baez and Van Houten,
unpublished results). Other receptors for folate are being identified by similar
approaches [Sasner and Van Houten, 1989]. There is a gradient of responsive-
ness to folate from anterior to posterior, and it will be interesting to determine
whether receptors follow this gradient [Preston and Van Houten, 1987b}.

As Chlamydomonas, ciliates have different mating types, but, unlike Chlam-
ydomonas, some ciliates signal their presence to complementary mating types
by soluble pheromones. These pheromones cause physiological changes in
cells in preparation for mating. The two mating types of Blepharisma japonicum
each have a soluble ‘‘gamone.”” Type I cells secrete blepharmone (gamone I,
a glycoprotein of 20,000 M;), and type II cells put out blepharisomoae (gam-
one I1, a tryptophan derivative) [see Van Houten and Preston, 1987, and Nobili,
1987, for reviews). Blepharisomone is a chemoattractant to cells of mating
type 1 and is a common gamone to all Blepharisma species. In contrast, gam-
one 1 is species specific. Binding studies using 121.gamone II imply that
there is a specific binding site, perhaps a receptor on the cell surface. How-
ever, receptor proteins for these interesting stimuli have not been identified.

Species of another ciliate, Euplotes, have multiple mating types. The genetic
analysis implicates three to four codominant alleles of the mating type locus,
depending on the species. The expression of a homozygous or heterozygous
state determines the cell’s mating type and, presumably, both the pheromones
released and receptors displayed at the cell surface. At present there is no agree-
ment about the nature of this complex system: whether cells synthesize recep-
tors for the pheromones they produce or only for the pheromones they do not
produce [see Beale, 1990, for overview; Nobili et al., 1987; Heckmann and
Kuhlmann, 1986]. ' )

In the self-recognition model for Euplotes raikovi, a homozygous cell
expresses a single receptor to which homologous (self)-pheromone or nonself-
pheromones from cells of other mating types can bind. If there is sufficient
nonself-pheromone to displace the self-pheromone from the receptor, the mat-
ing process will commence. This model is supported by competition binding
studies of purified pheromones [Luporini and Miceli, 1986]. An interesting
prediction of this model is that the receptor and pheromone (~ 14kD) will be
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closely related, indeed identical, except for the portion of the receptor necessary
to anchor it in the membrane. The cDNA for one pheromone has been character-
ized [Miceli et al., 1989], and cloning of the receptor gene will determine
whether the receptor and pheromone are related. The M, of the dimeric
pheromone—receptor complex is ~28 kD in molecular mass, which is compat-
ible with this model [Beale, 1990].

A different model for Euplotes octocarinatus predicts not one but many
receptors per cell recognizing all pheromones but the ones produced by the
cell itself [Heckmann and Kuhimann, 1986]. Genetics of Eup. octocarinatus
lend support to this model, and the recent cloning of the pheromone genes will
help to clarify the details [Meyer et al., 1991, and personal communication;
see Van Houten et al., 1981, for overview of protozoan chemoresponse}.

4. Yeast. There are two mating types, @ and a, of haploid cells of the yeast
Saccharomyces cerevisiae. Each mating type produces a pheromone that arrests
cells of the complementary mating type in G1, induces changes in the cell
wall and the characteristic shmoo shape, and alters gene expression as a pre-
lude to mating. The pheromones a and o are small peptides of 12 and 13
amino acids each [Thorner, 1981). The a-factor binds to approximately 8,000
sites on an MATa cell with a K4 of 6 X 10~° [Jenness et al., 1986, 1987]. A
haploid cell will express the a or a-receptor gene, but not both and likewise
secretes only the pheromone to which it will not respond. The mechanism by
which the a-factor is secreted is unconventional and may involve a specific
ATPase pump [see Featherstone, 1990, for review]. Diploid cells that result
from mating are not responsive to either pheromone. The genetics of mating
types in yeast is fascinating [Nasmyth, 1982], but here only the genes for the
receptors are the focus of attention [see Fields, 1990, for ashort review of the entire
pheromone response].

The receptor for a-factor is coded for by the STE2 gene and for a-factor by
the STE3 gene [Burkholder and Hartwell, 1985; Nakayama et al., 1985; Hagen
etal., 1986]. The amino acid sequence that is inferred from the DNA sequence
gives a picture of two receptors that are similar in structure. It is curious that
while their hydmpathy plots are virtually superimposable with seven potentlal
membrane-spanning regions, the proteins are utterly different in primary amino
acid sequence [Hagen et al., 1986]. However, their deduced structures resem-
ble those of members of the class of receptors that interact with G proteins:
the thodopsin/B-adrenergic, muscarinic acetylcholine family {Herskowitz and
Marsh, 1987; Marx, 1987; Marsh and Herskowitz, 1988). This classification
based on structure is supported by recent reports of G protein involvement in
the mating process (see below).

D. Invertebrates

This section focuses on chemoreception in sea urchin spermatozoa and arthro-
pods, to the exclusion of other interesting, but less well-characterized inverte-
rate receptor systems [see Ache, 1987, for a review].
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Fig. 6. Summary of events that occur upon an €2 peptide interacting with its receptor on the
sea urchin sperm cell. [Reproduced from Garbers et al., 1986, with permission of the publisher.}

Secretions from the eggs of the sea urchins Strongylocentrotus purpuratus
and Arbacia punctulata stimulate spermatozoan motility and metabolism to
facilitate fertilization [Trimmer and Vacquier, 1986]. Upon stimulation, inter-
nal levels of CAMP and cGMP increase, there is a net H* and K* efflux
and calcium influx, and guanylate cyclase is dephosphorylated (Fig. 6). The
stimulus activity comes from two peptides, speract and resact, consisting of
10 and 14 amino acids each [Dangott and Garbers, 1984].

Speract and resact stimulate spermatozoa in a species-specific manner through
receplor proteins in spermatozoan membranes. Speract- and resact-binding
proteins have been identified through crosslinking studies as proteins of M,
77,000 and 160,000, respectively [Dangott and Garbers, 1984; Shimomura et
al., 1986; Bentley et al., 1987). The 160,000 M, resact receptor and the
guanylate cyclase are the same protein [Shimomura et al., 1986] and repre-
sent one example of a new paradigm for second-messenger signal transduc-
tion [Bentley et al., 1986b; Paul et al., 1987; Thorpe and Garbers, 1989,
Garbers, 1989a,b; Schulz et al., 1989]. The speract peptide of Strong. pur-
puratus likewise activates a guanylate cyclase, but it is not yet evident whether
the 77 kD protein to which speract binds is the receptor or a subunit thereof or
how it relates to the guanylate cyclase [Schulz et al., 1989]. When spermato-
zoa are incubated with egg jelly or resact, the guanylate cyclase is first tran-
siently activated and then inactivated by dephosphorylation [Bentley et al.,
1986a,b]. This loss of phosphates coincides with a change in mobility of the
enzyme on gels from 160,000 to 150,000 M. Therefore, like receptors in bac-
teria and Dictyostelium, spermatozoan recepiors may undergo covalent modi-
fication, and like Bac. subtilis in particular, attractant receptor occupancy would
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be associated with removal of covalently attached groups. Whether this modi-
fication in spermatozoa is part of the adaptation process is not yet known.
The spermatozoan resact receplor serves as a model for the mammalian
atriopeptide factor receptors, which similarly are guanylate cyclases and there-
fore represent yet other members of this relatively newly described signal trans-
duction receptor family that crosses phyla [Lowe et al., 1989; Schulz et al.,
1989; see Paul et al., 1987, and Bentley et al., 1986b, for discussions).

Among the arthropods, lobsters (both spiny and American) and insects share
very similar structures and receptor cell mechanisms for taste and smell, even
though the medium by which the stimuli arrive js in water for crustacea and air
for insects [Atema, 1987]. The long, aesthetasc sensilla on the lobsters anten-
nules and the sensilla trichodea of moth antennae subserve olfaction. Both
have permeable chitinous coverings over the dendrites of the bipolar receptor
neurons that send information about odors in trains of impulses to the central
nervous system (CNS) [Ache, 1987; Kaissling, 1987]. The thick hedgehog
sensilla on the lobster walking legs and the tarsal sensilla of insect feet are
chitin-covered dendrites of receptor and mechanosensory cells with access to
taste stimuli only through one tip pore. The animals taste as stimulj enter the
sensilla, usually upon direct contact with food. As in olfaction, information
about stimuli is sent to the CNS in trains of action potentials from the recep-
tor neurons.

Sensilla on insect legs respond to contact with sugar solutions [Dethier, 1978}
and those on insect antennae are tuned to components of pheromones [Vogt,
1987, Kaissling, 1987, while the lobster and other crustacea find amino acids,
nucleotides, and peptides to be stimulatory [Ache, 1987; Carr et al., 1987).
The spectrum of stimulatory amino acids is large and overlaps between anten-
nules and legs, characteristically with glutamate receptors prominent on legs and
hydroxyproline and taurine receptors prominent on antennules [Atema, 1987].

As Atema [1985] notes, signals must not persist. They must be removed
from the area of the receptor cell if fresh information is to be processed. The
female pheromone is rapidly degraded by the abundant esterase in the lymph
that surrounds the receptor dendrites in the male silk moth sensillum [Vogt et
al., 1985; Vogt, 1987]. It is possible that the stimulus survives on its traverse
from pores in the chitin covering to the receptor cell, because it is promptly
bound to a lymph protein that protects it until it can stimulate the receptor
[Vogt, 1987; Vogt et al., 1989). The lobster, likewise, has a system for degra-
dation of signal in the aesthetasc sensilla (Fig. 7). Here a primary stimulus,
ATP, is degraded to ADP, AMP, and, finally, adenosine, all of which are active
as weaker stimuli or inhibitors of the degradation enzymes or are actively trans-
ported into the receptor cell (Trapido-Rosenthal et al., 1987]. One end result
of this cascade is the removal of stimulus from the receptor interaction, but
certainly there are other modulatory effects as well.
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Fig. 7. Multiple receptors and signal degrading enzymes of the lobster olfactory sensilla. The
cross section through the sensillum shows lymph surmounding dendrites, on which are separate
receptors for adenine nucleotides and a ubiquitous adenosine uptake system. ATP, ADP, and
AMP are stimulatory while adenosine is not. and ADP and AMP are antagonists of the ATP
response. In the sensillar lymph surrounding the dendrites are enzymes that rapidly degrade
ATP to adenosine and, by doing so, create complex mixtures of stimuli and ultimately adeno-
sine that is removed by uptake. (There is no evidence that the classes of receptors always reside
on scparate dendrites.) [Reproduced from Trapido-Rosenthal et al., 1989, with permission of
the publisher.)

Insects and crustacea have very low thresholds for response of a receptor
cell [Kaissling, 1987; Ache, 1987). It is estimated that one molecule of pher-
omone can elicit an action potential {Kaissling, 1987). The action potentials
originate in either dendrite or soma [Ache, 1987; Kaissling, 1987, and their
onic mechanism(s) are not yet fully characterized {Schmiedel-Jakob et al.,
1989; McClintock and Ache, 1988, 1989a,b]. A cell can be specialized to
respond best to one stimulus, or it can be a more generalist in its response.
In either case, the rate of discharge is a function of stimulus concentration,
but a unique pattern of discharge does not code each individual stimulus in
the cell’s response spectrum [Ache, 1987]. Therefore, when odorant stimuli
from natural sources arrive at the receptor cells in mixtures, it is thought that
the collective pattern of depolarized cells across the olfactory sensillum
provide the CNS with information about the quality and quantity of the odor.
However, it is now clear (for vertebrates as well as invertebrates) that com-
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ponents of odorant mixtures can be excitatory to one cell and inhibitory
to another, and, while both individual cells are depolarized by the mixture,
the inhibitory components can reduce the magnitude and delay the onset of
the evoked depolarization [McClintock and Ache, 1989; Michel and Ache,
1990, Dionne, 1990}. Therefore, the first level of integration of information is
at the level of the receptor cell [Michel and Ache, 1990] and not in the CNS,
as previously believed.

The lobster responds over many orders of magnitude of stimulus concen-
tration [Ache, 1987; Atema, 1987]. A means of expanding the dynamic range
of a cell is the shift up of the entire stimulus-response curve of leg ammo-
nium receptor cells after adaptation to background amounts of ammonium
{Borroni and Atema, 1987]. (This is very reminiscent of the neutrophil’s abil-
ity to respond to an increase in 200 receptors occupied regardless of whether
the change is 200 to 400 or 4,000 to 4,200 {Zigmond, 1989]; see section I1.B.)
Adaptation may allow these cells to distinguish signal from background
ammonium, which ranges from 10 "% M in seawater to 10~2 M in prey tissues
[Atema, 1987]. The molecular mechanism of adaptation is not yet understood,
but must somehow be accounted for in the receptor function or the transduc-
tion mechanism [see Atema, 1985; Derby and Atema, 1987; Schmitt and Ache,
1979; and Ache, 1987, for consideration of adaptation and section II.G. for
other means of expanding a cell’s dynamic range].

The receptor proteins of arthropod sensilla have been elusive, even though
moths provide reasonable amounts of membrane for receptor biochemistry.
Recently, however, Vogt et al. [1988] used a photoaffinity analog of the
Antheraea polyphemus pheromone (E,Z)6,11->H-hexadecanichyl diazoacetate
to label not only the soluble receptor lymph-binding protein but also a 69 kD
protein from dendrite membranes. This protein is labeled specifically by the

photoaffinity probe and is found in dendritic membrane only and in male moths
only [Vogt et al., 1988].

E. Vertebrates

Vertebrates monitor their chemical environment through taste, smell, and
common chemical sense. In all these sensory modalities, neurons or neuro-
epithelial cells serve as receptor cells.

1. Taste. Taste buds generally are comprised of 50—-150 neuroepithelial cells
in pear- or spindle-shaped clusters [Kinnamon, 1987]. They make contact with
the environment at their apical end with the microvilli that protrude through
the taste pore. The receptor cells are innervated by fibers that penetrate or
abut the bud. Generally, sweet, saline, sour, and bitter tastants are detected by
receptor cells that are not particularly finely tuned, but do respond best to one
tastant class [Teeter and Brand, 1987b]. Amino acids are taste stimuli, par-
ticularly in fish. As in crustacea, the spectrum of amino acids overlaps for
taste and smell {Caprio, 1988; Atema, 1987].
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Upon stimulation, a taste receptor cell will release neurotransmitter and alter
the rate of spontaneous firing of primary nerve fibers that traverse to the CNS.
In this case, interaction of stimulus with the apical membrane of the receptor
cell is transduced into signals for neurotransmitter release and generally not
into active electrogenic response as in taste receptors in invertebrates and all
olfactory receptor cells (although some taste cells have been shown to be capa-
ble of generating action potentials [Roper, 1989]).

There is no unifying mechanism for taste stimulus transduction. The ion
movements and second messengers in response to saline, sweet, bitter, sour,
and amino acid tastants are still being deciphered [Kinnamon, 1988; Teeter and
Brand 1987b]. However, some generalizations can be made, and all of the
following mechanisms are likely to work (Fig. 8): The release of neurotrans-
mitter is a calcium-dependent process, and a tastant could increase internal
calcium by one of several ways. 1) Depolarization would open calcium chan-
nels and allow an influx of internal calcium. The depolarization could be a
direct consequence of the tastant, e.g., salt entering the cell through voltage-
insensitive amiloride blockable channels [DeSimone et al., 1981; DeSimone
and Ferrell, 1985; Schiffmann, 1990); H* transiently blocking resting K*
conductance, thus decreasing a hyperpolarizing conductance [Kinnamon and
Roper, 1988]; or a tastant binding to receptor that in turn opens a channel or
activates a transport system [Mierson et al., 1988; Teeter et al., 1990). 2)
Alternatively, no depolarization is needed if a tastant alters surface potential
and consequently opens channels in the membrane, or if the tastant, through
a receptor such as the sugar receptor or the catfish alanine receptor, generates
internal messengers that liberate calcium from internal stores {see Teeter and
Brand, 1987b; Teeter et al., 1987, 1989; and Roper, 1989, for reviews).

There is evidence for receptors in the mediation only of sweet and amino acid
taste [Sato, 1987; Teeter and Brand, 1987b; Cagan and Boyle, 1984; Dionne,
1988]. Perhaps the best characterized are the catfish receptors for alanine and
arginine for which binding kinetics have been measured and blocking antibodies
have been produced [Cagan, 1981; Brand et al., 1987; Bryant et al., 1987,
Kalinoski et al., 1987a,b). A heterogeneous group of proteins of 110,000 dal-
tons exclusively from taste tissues are recognized on immunoblots by an anti-
body that blocks alanine binding [Bryant et al., 1987, 1989]. The receptor among
these proteins has yet to be purified or cloned, but it is expected that the ar-
ginine receptor will be a ligand-gated cation channel and the alanine receptor
will be a G protein—associated, transmembrane receptor [Teeter et al., 1990).

The only other partially characterized taste receptors are for sapid sti-
muli [Persaud et al., 1988] and the sweet-tasting protein thaumatin [see Sato,
1987 for a review]. A *H-photoaffinity analog of thaumatin was used to label
specifically a 50,000 dalton protein in taste but not other papillae. Likewise,
proteins eluting from a thaumatin affinity column included one of ~50,000
daltons.
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Fig.8. Diagrammatic representation of taste transduction mechanisms. Sour transduction involves
acid block of voltage-dependent K* channels, which are restricted to the apical membrane.
Na* transduction involves the passage of Na* into taste cells through passive, amiloride-
blockable Na* channels on the apical membrane of taste cells; Na* is then pumped out by an
Na* K *-ATPase on the basolateral membrane. Sweet transduction involves receptor-mediated
stimulation of adenylate cyclase; voltage-independent K* channels on the basolateral mem-
brane are then closed in response to cAMP-dependent phosphorylation. However, the link between
increased adenylate cyclase activity in response 1o sweet stimuli and closure of K* channels by
¢AMP-dependent phosphorylation has not yet been shown in the same taste receptor cells. Trans-
duction by all these pathways involves one final common pathway: depolarization and influx of
Ca?* through voltage-dependent Ca?* channels. Transduction mechanisms for other taste modal-
ities have not been illustrated and include ligand or cyclic nucleotide activated cation channels.
It is not yet clear if all these mechanisms are present on a single taste cell, as illustrated here, or

if different taste cells are specialized to detect particular taste modalities. [Reproduced from
Kinnamon, 1988, with permission of the publisher.]

2. Olfaction. Olfactory receptor cells are bipolar primary neurons. The
cilia (or, less commonly, microvilli) at the apical ends make contact with the
immediate environment, the mucous layer that sweeps across the olfactory
and respiratory epithelia. The mucus is secreted in part by sustentacular cells
that along with the receptor and basal cells make up the epithelium. Odorants
partition into the mucus, where at least some kinds are bound by an olfactory-
binding protein (OBP) [Pevsner et al., 1985; Bignetti et al., 1985] that is secreted
into the mucus [Pevsner et al., 1986]. It is likely that this OBP from cow and
mouse as well as a newly described protein from frog [Lee et al., 1987] are
analogous to the insect lymph pheromone-binding protein and protect odorant
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until it contacts the cilia, the site of olfactory transduction [Adamek et al.,
1984; Rhein and Cagan, 1981]. Alternatively, the OBP may function to clear
odor from the mucus [see Getchell and Getchell, 1987, and Getchell et al.,
1984, for review]. As the intake of air washes odorants over the epithelium,
the odorants partition into the mucus as a function of their solubility, impos-
ing a differential distribution of odorants on the epithelium. Superimposed on
this is the inherent pattern of receptor cells. Individual receptor neurons are
broadly tuned with a spectrum of response that overlaps that of other cells
[Gesteland, 1986; Sicard and Holley, 1984]. However, receptor cells are not
evenly distributed across the epithelium. Maps of activity across the epithe-
lium show differential clusters of activity to different odorants [Edwards et
al., 1988). The axons of the receptor cells project to the olfactory bulb, and
the pattern of activity across the axons must encode the quantity and quality
of the odor [see Kauer, 1987, for a review].

A receptor cell will respond to an excitatory odorant stimulus with a decrease
in input resistance, current flow of monovalent cations, and subsequent depo-
larization receptor potential that is responsible for opening voltage-dependent
channels of the axon hillock [Gesteland, 1986; Persaud et al., 1987). The
opening of these channels converts the transducing receptor current into action
potentials that are transmitted to the CNS [see Getchell and Getchell, 1987,
for review]. The important questions in olfactory transduction regard the gen-
eration of a receptor current and depolarization by the interaction of stimulus
with dendritic ciliary membrane.

Because olfactory receptor cells are broadly tuned, it is possible that each
has many receptors for different stimuli. The number of stimuli that a human
can detect is thought to be 10* [Dionne, 1988), and therefore the number of
receptors necessary for this detection could be very high. There could be many
gene products of similar size but with different odorant-binding capacities,
perhaps generated through differential gene rearrangement analogous to the
immune system or through differential splicing of one transcript or transcription
of a family of genes. Minimally there appear to be two transduction mechanisms
(see below) and therefore at least two sets of receptor types. However, to date
no vertebrate olfactory receptor protein has been isolated, although there are
some candidates (see next paragraph). This failure to identify an external olfac-
tory chemoreceptor may be due in part to the difficulties of dealing with low
abundance membrane proteins of relatively low binding affinity [Price, 1981].
Alternatively, there may be mechanisms of olfaction that do not require recep-
tors, in which volatile lipophilic molecules interact directly with the membrane
[Dionne, 1988; Anholt, 1987; Lemeret al., 1988]. The recent cloning of puta-
tive receptor genes will help to resolve these issues [Buck and Axel, 1991; Nef
and Dionne, personal communication; see section V}.

Candidates for receptors are the anisole- and benzaldehyde-binding pro-
teins identified by affinity chromatography of dog epithelium (Price and Willey,



9% Van Houten

1987, 1988]. These proteins are found in the olfactory but not respiratory epi-
thelium. Antibodies against the anisole proteins block electrical responses to
anisole stimulation best, but block all odorant stimulation to some degree,
perhaps reflecting epitopes common to all receptors. This idea is supported
by studies of electro-olfactograms (EOGs) in the presence of monoclonal anti-
bodies against the same proteins [Price and Willey, 1988). Some of the
monoclonal antibodies were specific in their inhibition of the electrical stimu-
lation by anisole or benzaldehyde, but others were nonspecific. It is curious
that the anisole- and benzaldehyde-binding proteins are of the same M, (62,000)
and perhaps share an epitope in common to a family of olfactory receptors.

Lancet and coworkers have found a membrane glycoprotein of 95 kD (gp95)
from frog olfactory epithelium that is of particular interest because antibodies
against it coprecipitate the ciliary adenylate cyclase, which they argue is an im-
portant component in sensory transduction [Lancetetal., 1987; Lancet and Pace,
1987; Chen et al., 1986]. While this protein has the tissue specificity and loca-
tion in ciliary membrane to qualify for a receptor, it has not been demonstrated
to bind odorant and appears to be secreted into the mucus [Menco, 1991].

Fesenko et al. [1987] reported odorant binding to a membrane glycoprotein
specific to the olfactory epithelium. However, as Vogt et al. {1988] point out,
there is no demonstration that this protein is enriched in the ciliary fraction.
In other examples, binding sites for *H-alanine [Rhein and Cagan, 1981; Cagan,
1981], amino acids on skate olfactory epithelium [Novoselov et al., 1988},
and pyrazine [Pelosi et al., 1982] are described, but the protein moieties are
at best only partially purified and characterized.

3. Common chemical sense. In common chemical sense, chemosensation
is due to the stimulation of epithelial or mucosal free nerve endings from
branches of the trigeminal nerve [Silver, 1987]. Receptor studies lag behind
those in taste and olfaction and will not be treated further here.

F. Perireceptor Events

Ligand binding to receptor is thought to begin the transduction process that
leads to the second messengers and ion conductance changes that are essen-
tial for chemoreception. However, there are essential events that occur prior to
and after ' inding, the so-called perireceptor events that play a significant role
in the chemoreception process [Getchell etal., 1984]. As mentioned for insect
pheromone and vertebrate olfaction, there are molecules that are likely to be
carriers, i.c., protectors, of the odorant molecule until it binds to receptor.
Stengl et al. [1990] have shown that pheromone complexed with pheromone-
binding protein is less effective than pheromone alone at opening ion chan-
nels in cultured insect cells, and therefore pheromone-binding proteins may
also function to sequester stimulus in preparation for the next wave. Recently,
an mRNA for a protein analogous to the OBP has been demonstrated in von
Ebner’s glands, salivary glands located directly beneath and ducting into a
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trough at the base of rat taste bud papillae [Schmale et al., 1990]. The protein
is a member of the same carrier protein superfamily to which OBP belongs,
suggesting that this salivary protein might function in the concentration or
delivery of sapid molecules to the taste receptor. Whether these binding pro-
teins can act to facilitate diffusion or cause concentration of stimulus {Pevsner
et al., 1986) is a matter of discussion [Snyder et al., 1988; Pelosi and Dal
Monte, 1990). However, there clearly are other mechanisms to remove the
stimulus from the region of the receptor: phosphodiesterase of Dictyostelium
degrades extracellular cAMP; neutrophil enzymes degrade the attractant stimulus
FMLP; phosphatase, and nucleotidases in lobster, destroy nucleotide stimuli;
the movement of mucus and active and facilitated transport remove stimuli from
the area of receptors in vertebrates and crustaceans; and intracellular degradation
by cytochrome P-450 and UDP-glucuronosyltransferase prevent the diffusion
of hydrophobic odorants back out of cells where they can be confused with
newly arriving stimuli [Lancet et al., 1989; Lazard et al., 1990, 1991; see
Burchell, 1991, for review). The relative rates of these reactions greatly influence
the sensitivity, duration, and adaptation of receptor-mediated events and there-
fore indirectly affect sensory transduction [see Getchell et al., 1984; Getchell
and Getchell, 1987;Carr, 1989; and Trapido-Rosenthal et al., 1989, for reviews]).

G. Reception in Mixtures

Stimuli rarely come singly, but more usually in a bouquet with other com-
ponents. Mixtures are the most effective stimuli in eliciting behavioral
in crustacea [Carr et al., 1984] and insects [Linn and Roelofs, 1989; Linn et
al., 1985; O’Connell, 1986; Vogt, 1987]. The components of natural stimula-
tory mixtures for these organisms are not generally equimolar or equipotent;
some components act additively or synergistically to stimulate, and others sup-
press the behavioral response [see Derby and Atema, 1987; Caprio 1987a,b;
Ache, 1987, 1989; and Derby et al., 1989, for discussion).

The individual receptor cells inside both taste and olfactory sensilla can be
finely tuned to only one component of the mixture, and indeed narrow tuning
predominates in the lobster taste and smell [Atema, 1985] and insect olfac-
tion [Kaissling, 1987]. However, despite the narrow tuning, these
cells do not extract information about their *‘best’” stimulus to the exclusion
of other components of a mixture. Indeed, mixture components, to which the
finely tuned cell will not respond individually, often suppress the
cell impulse output from its *‘best’ stimulus [Derby and Atema, 1987]. This
mixture suppression is thought to allow the cell a large concentration range
for response [Atema, 1987; Johnson et al., 1989]. The lobster receptor cell
response saturates over two to three orders of magnitude, but the receptor
populations must be able to respond over a range of 10~ *~10~2M amino acids,
for example [Atema, 1985; Ache, 1987]. Not all stimuli in mixtures are exci-
tatory or neutral. As discussed under invertebrate olfaction (section 11.D.2)),
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Lobsters and insects are not the only organisms to show mixture suppres-
sion and synergy, but they serve to point out that, whep €Xxamining receptor
function and receptor-mediated transduction, one must be aware of mixture
effects. Additionally, mixture Suppression occurs in the CNS as well as the
periphery and therefore should noy be interpreted solely as a modification of

receptor or receptor cell function [Derby et al., 1984; Derby and Ache, 1984].

III. SECOND MESSENGERS IN CHEMORECEPTIQON
A. Overview of Second Messengers

Now that several chcmoreceptor Systems have been introduced, it is time to
discuss their common aspects of signal transduction. None of these transduc-

To avoid confusion, these wi]] be referred to generally as ““internal®* messen-
gers and more specifically as *“secong’* and *‘third"* messengers if this hier-

1986}, neutrophil chemotaxis [Sha’afi and Molski, 1988], and vertebrate olfac-
tion and gustation [see Teeter and Gold, 1988; Lancet and Pace, 1987; and
Anholt, 1987, for overviews). In Chlamydomonas and p, discoideum it is most
clearly established that cyclic nucleotides are internal messengers that function
as links in the sensory transduction pathways.

In Chlamydomonas, intracellular CAMP is increased 10-folq upon flagellar
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a single mating type, and an inhibitor of cAMP protein kinase, H8, antago-
nizes these effects. The flagella have adenylate cyclase (albeit different from
vertebrate enzymes) and phosphodiesterase activity {Pasquale and Goodenough,
1987]. Therefore the site of signal transduction that controls second-messenger
levels could be either of these enzymes.

In D. discoideum, cGMP is not the only internal messenger generated as a
result of receptor binding (Fig. 5), but it does indeed appear to be a causative
agent in the half of the bifurcated response pathway that mediates chemo-
taxis. The transient increases in internal cGMP in response to external cAMP
or folic acid stimuli occur over the time course expected for the second-
messenger response for initiation of chemotaxis, and for some time cGMP
was considered the second messenger in chemotaxis [Mato et al. » 1977; Wurster
et al., 1977; see Van Houten and Preston, 1987, for an overview]. Now it is
clear that increases in inosito} phosphates, in particular inositol-1,4,5-tris-
phosphate (IP;), and Ca?*, precede the stimulation of guanylate cyclase and
the rise in cGMP (Fig. 5) {Small et al., 1987; Europe-Finner and Newell,
1985, 1986]. Therefore cGMP may be considered a later, perhaps fourth, mes-
senger and functions in the accumulation of myosin in the cytoskeleton of the
Dictyostelium cell that is preparing for a change in cell shape and orientated
movement [Liu and Newell, 1988; Newell et al., 1988]. Actin polymerization
likewise is implicated in change of cell shape and as a driving force in pseudo-
pod extension [Newell, 1986; Condeelis et al., 1988). The “B"* receptor,
mediated chemotaxis pathway that couples through G,, to phospholipase C
(PLC) can be examined separately from the *‘A’’-mediated relay pathway that is
coupled through the G; protein to the adenylate cyclase, and it appears that
G2, is directly or indirectly responsible for transduction of stimulus by cAMP
to actin nucleation centers [Hall et al., 1989]. Intracellular Ca*, pot cGMP,
appears to be the second messenger for actin polymerization, although both
second messengers are the consequences of **B”*-receptor activation of PLC
[Newell, 1986]. Mutants with defective phosphodiesterase and hence abnormally
clevated and prolonged rises in cGMP are defective in chemotaxis [Ross and
Newell, 1981; Van Haastert et al., 1982}. In these mutants, myosin associa-
tion with the cytoskeleton but not actin polymerization is affected [Newell,
1986; Liu and Newell, 1988]).

In sea urchin sperm chemotaxis, the stimulus resact increases cCAMP levels
300-fold [Garbers and Kopf, 1980] and alters cGMP levels by transiently stim-
ulating and then inhibiting the receptor guanylate cyclase [Bentley etal., 1986a].
The adenylate cyclase requires an influx of calcium for its activation (Fig. 6),
and cAMP in tumn activates the cAMP-dependent protein kinase that figures
into the stimulatory effects of resact on respiration and motility [Garbers et
al., 1980; Garbers, 1986; see Satir, 1985, Bonini and Nelson, 1988, and Tash
et al., 1987, for effects of cyclic nucleotides on flagellar motility]. Because
the guanylate cyclase is both resact receptor and generator of internal messen.
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ger. it seems safe to assume that either the absolute increase or decrease (as in
vision) or the changes in cGMP figure into the chemotaxis signal transduction
pathway.

Olfactory cilia have a very high adenylate cyclase activity [Lancet, 1986),
and this activity is stimulated 1.5-2.5-fold with some odorants in a GTP-
dependent manner [Pace and Lancet, 1986; Sklar et al., 1986; Shirley ct al.,
1986]. At present, odorants are categorized by their ability or inability to stim-
ulate adenylate cyclase. The latter class is thought possibly to work by stimulation
of phosphoinositol lipid (PIP,) hydrolysis to generate internal messengers [Lancet
and Pace, 1987). (cGMP is not a candidate as an internal messenger here because
its levels do not change with odorant stimulation [Shirley et al., 1986].)

What has not been apparent is the role of the cAMP that clearly increases
in response to some odorants: Is cAMP a second messenger that opens ion
channels in receptor cells either directly or by way of a protein kinase A activ-
ity, or is it outside the sensory transduction pathway and functions to desensi-
tize the receptor or close ion channels by processes such as phosphorylation
(Fig. 9)? The time course of the adenylate cyclase stimulation in some sys-
tems would suggest that it functions in a slower process such as adaptation/
desensitization [Bruch and Teeter, 1988; Bruch et al., 1987a,b, 1989; Anhoit,
1987]. Also, there are ion conductances that are directly odorant stimulated,
obviating the need for a second messenger to open channels [Labarca et al.,
1988]. However, cyclic nucleotide—sensitive conductances have also been iden-
tified by voltage- and patch-clamping of receptor cells. These conductances
respond equally well to cAMP or cGMP [Nakamura and Gold, 1987; Kolesnikov
etal., 1990; Bruch and Teeter, 1990). The magnitude of the EOG, a summed
response of olfactory epithelial cells elicited by an odorant, correlates with the
magnitude of adenylate cyclase activity, possibly implying a transduction and
not adaptation role for CAMP [Lowe et al., 1988]. Which cne or more of these
nucleotide-dependent and -independent conductances is involved in sensory
transduction and generation of the receptor potential in the olfactory receptor
cells remains to be established. However, it seems clear that cAMP gating of
channels will be among the mechanisms [Firestein and Shepherd, 1989, 1990].

Recently, stop-flow kinetics analyses have provided evidence that cAMP can
indeed increase and drop off sufficiently rapidly in a GTP-dependent manner to
qualify as a second messenger for a set of odorants [Breer and Boekoff, 1991;
Breer et al., 1990a,b]. It appears that odorants stimulate either cAMP or IP; pro-
duction in rat olfactory cilia on a subsecond time scale. In comparison, a moth
pheromone stimulates second-messenger production on a time scale sufficiently
fast to be involved in conductance changes, but only IP; is generated in the an-
tennal preparations. In all cases, the effects on second messengers are GTP
dependent, reinforcing the idea that odorant receptors will eventually be isolated.
Excitable cells other than olfactory receptor cells did not respond to odorants
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Fig. 9. Schematic of two alternative working hypotheses for signal transduction at the olfac-
tory membrane. a: Linkage of an odorant receptor (R) via 2 G protein (G) to adenylate cyclase
(AC) results in the generation of cAMP, which, cither directly or via phosphorylation, activated
an ion channel (IC). b: Linkage of an odorant recognition site 10 a channe! causes opening of
the channel directly. In this model, cAMP-dependent phosphorylation would lead to inactiva-
tion (desensitization) of the channel. Activation by the odorant of the olfactory adenylate cyclase
may either be mediated via a distinct receptor protein or via direct activation (i.e., partial disso-
ciation) of the G protein as a result of partitioning of the odorant in the membrane. There now is
evidence that in some systems cyclic nucleotides can activate conductances as part of the sen-
sory transduction pathway. [Reproduced from Anholt, 1987, with permission of the publisher.}

with increases in second messengers, helping to discount some of the concern
that the lipophilic nature of some odorants would allow them to induce con-
ductance changes by direct membrane interactions without benefit of receptors
or specific binding sites on channels [Dionne, 1988; Lemer et al., 1988;
Kashiwayanagi et al., 1990).

There may be a second mechanism by which odorants stimulate the adenyl-
ate cyclase [Anholt and Rivers, 1990]. In frog epithelium, adenylate cyclase
is stimulated not only by odorants, but also by Ca?*-calmodulin in a GTP-
dependent manner [Anholt and Rivers, 1990). The two modes of stimulation
are additive, providing for alternate mechanisms by which odorants can pro-
duce second messengers and for ‘‘cross-talk’” between pathways. In particu-
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lar, Anholt and Rivers [1990] propose that low concentrations of odorants directly
open Ca?* channels to provide the Ca®* for calmodulin stimulation of adeny-
late cyclase and that, at high concentrations of odorants, the olfactory specific
G protein (Gyy) is activated, resulting in further stimulation of adenylate cy-
clase. This model implies that receptor cells could have the potential for cross-
talk between these pathways to add a dimension of integration of information
about quantities of stimuli in mixtures, for example. (See next section for
parallel pathways for C(AMP and IP; in catfish.)

Similarly in taste cells, cyclic nucleotide internal messengers are implicated
in the depolarization of the receptor cell. Reports of GTP-dependent cAMP syn-
thesis in response to sugars in rat taste tissue {Lancetet al., 1987; Striemet al.,
1989] and to amino acids by catfish [Bruch and Teeter, 1988, 1989; Kalinoski
et al., 1988; Bruch et al., 1989] are further supported by direct measurements
of depolarizing conductance changes mediated by cyclic nucleotides. Rat taste
cells injected with cGMP (and to a lesser extent with cAMP) depolarize the cells
by decreasing K* conductance, the same conductance that decreases during
depolarization with a sugar stimulus [Tonosaki and Funakoshi, 1988}. Frog taste
cells under patch-clamp likewise decrease K* conductance with cAMP (¢cGMP
was not tested), and in this case the conductance decrease has been traced to a
- cAMP-dependent protein phosphorylation [Avenet et al., 1988].

The stimulation of taste adenylate cyclase may be sufficiently fast to allow
cAMP levels to participate in transduction [Kalinoski et al., 1988,1989], but not
all tastants in catfish activate adenylate cyclase, thereby requiring at least a
second transduction mechanism. (The recent reports of tastants L-arginine and
L-proline activating ion channels directly neatly provides one answer [Teeter et
al., 1990; Kumazawa et al., 1990; Kohbara et al., 1990]; see section IV.D.). The
modulation of ion channel gating by cAMP-dependent protein kinase is a depar-
ture of the gustatory from the olfactory system with its direct gating by cyclic
nucleotides [Nakamura and Gold, 1987], but there are bound to be multiple
mechanisms of transduction in taste cells, perhaps some of which will include
direct gating by cyclic nucleotides, calcium, inositol phosphates, and other inter-
nal messengers (see Tecter and Gold, 1988, for an overview; also see sections
HI.C. and IV.B.).

Neutrophils experience transient increases in cAMP with chemotactic pep-
tide stimulation not as a result of activation of the adenylate cyclase, but prob-
ably through inhibition of the phosphodiesterase [Jackowski and Sha'afi, 1979;
Sha'afi and Molski, 1988; Smollen et al., 1980; Keller et al., 1970; Verghese
et al., 1985]. However, exogenously applied cAMP, epinephrine, PGE;, chol-
era toxin, and isoproterenol inhibit chemotaxis, phagocytosis, and degranula-
tion [see Sha'afi and Molski, 1988, for an overview]. |

Interestingly, dibutyrl-cAMP inhibits the FMLP-stimulated phosphoinositol
lipid hydrolysis [Della Bianca et al., 1986; Takenawa et al., 1986; Kato et al.,
1986] and may do so indirectly through the action of the cAMP-dependent
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protein kinase A on either the FMLP receptor or the sensory transduction G
protein characteristic of neutrophils and associated with the receptor [Sha'afi
and Molski, 1988). Taken together, these observations suggest an indirect,
modulatory role for the FMLP-induced transient rise in cAMP as opposed to a
role of an internal messenger in the sensory transduction pathway.

C. Phosphoinositol Lipid Hydrolysis and Sequelae

There is a renewed appreciation of the role of lipids and lipid metabolites in
receptor functioning. In particular, arachiodonic acic (AA) and the inositol
phospholipid hydrolysis products 1,4,5-IP; and diacylglycerol (DAG) have been
found to figure into a diverse range of sensory transduction pathway steps
[Berridge, 1987; Kikkawa and Nishizuka, 1986; Piomellietal., 1987; Axelrod
et al., 1988], many of which have been documented to be mediated by G pro-
teins [Gilman, 1987; Berridge, 1987, Stryer and Bourne, 1986; Axelrod et al.,
1988]. 1,4,5-1P; and DAG are generated by the action of phospholipase C
(PLC) on PIP,, although DAG can be derived from other sources as well. AA is
generated by the action of DAG lipase on DAG or phospholipase A, on mem-
brane lipids. Therefore, AA synthesis can be linked to or separate from the
PIP, metabolism. The functions of IP; and DAG appear to be the liberation of
calcium from internal, nonmitochondrial stores [Berridge, 1987] and the acti-
vation of protein kinase C, respectively [Kikkawa and Nishizuka, 1986). The
direct site of interaction of AA or its metabolites is not yet clear. It is clear,
- however, that IP;, DAG, and/or AA are produced as a result of ligand—receptor
interactions in Dictyostelium, neutrophils, and olfactory and taste cells.

A neutrophil’s response to FMLP is many faceted and mediated by several
different internal messengers. The facets of the response differ in concentra-
tion of stimulus and time: Chemotaxis requires a lower concentration of FMLP,
and changes in cytoskeleton preparatory to oriented movement occur imme-
diately; activation of NADPH oxidase that is seminal in the oxidative burst
requires a 10-50-fold high stimulus concentration {[Snyderman, 1984] and
occurs later in the process of activating the cell [Truettetal., 1988]. Therefore,
to simplify the discussion and yet touch upon the major issues of neutrophil
activation, two aspects will be examined, i.e., actin polymerization in prepar-
ation for chemotaxis and NADPH oxidase activation for the oxidative burst that .
produces bactericidal O, ~ and H,0,.

Receptor-FMLP binding through the intervention of a G protein stimulates
PLC activity and thereby increases the cellular content of 1,4,5-IP; and DAG
[Dillon et al., 1987a]. 1,4,5-IP; affects internal calcium stores and also serves
as a precursor to 1,3,4,5-IP (IP,), a potential stimulus for opening calcium
channels [Irvine and Moor, 1986; Houslay, 1987]. (External Ca** entry appears
to be essential for some sustained responses to stimuli, but the mechanism by
which surface membrane calcium channels open after the initial stimulation
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of IP; production is a matter of debate [Putney, 1987; Petersen, 1989; Schulz
et al., 1989). Additionally, the source of this secondary Ca?* for sustained
response need not be external [Krause et al., 1989).

The metabolism of 1,4,5-IP; follows two separate routes: 1) At ambient intra-
cellular Ca, it is dephosphorylated to 1,4-IP,, 4-1P, and inositol; and 2) at
increased calcium levels, it js phosphorylated to | 13,4,5-1P,, which is then
dephosphorylated through a different Sequence of intermediates. The differential
dependence on calcium implies different functions for the inositol pol
in neutrophil activation. There undoubtedly are other levels of control, as the find-
ing of §-adenosythomocysteine as a competitive inhibitor of phosphatidylinositol

a yet undefined interaction with the G protein that intervenes between recep-
tor and PLC [Dillon et al., 1987a). DAG also serves as an important source of
AA that in turn serves many functions by Providing a precursor to leukotrienes
(also chemoattractants), prostaglandins, and thromboxanes [Balsinde et al.,
1988] and by liberating internal calcium pools [Nasmith and Grinstein, 1987a,b;

ulus concentration. Subsequently, it reorients its Cytoskeleton to produce the
characteristic polar shape and moves up the gradient of attractant [Cochrane,
1984]. Underlying the shape change and motility are rearrangements of the

buffers and chelators, calmodulin inhibitors, and inhibitors and activators of
protein kinase [Wright et al., 1988; Harvath et al, 1989; Roos et al., 1987;
Sha’afi and Molski, 1988; Laskin et al., 1987). The roles must be complex,
because manipulations of protein kinase C and intracellular Ca alone or in
combination are not sufficient to account for the in vivo changes in F-actin
that precede chemotaxis [Howard and Wang, 1987). However, there are com-
plications in the interpretation of the results with phorbol myristate acetate
(PMA) treatment [Webster et al., 1986; etal., 1987) that do not satisfac-
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torily mimic the pertussis toxin—sensitive, presumably gelsolin-mediated [Yin,

1987] changes in F-actin stimulated by FMLP [Sha'afi and Molski, 1987; Howard
and Wang, 1987]. The pertussis toxin sensitivity may come in part from the G
protein—-mediated activation of phospholipase A, [Burgoyne et al., 1987]. The
participation of AA generated by phospholipase A; in early stimulus-induced
changes such as actin polymerization could account for some of the failures
of phorbol esters to mimic more of the FMLP response [Lackie, 1988].

The oxidative burst, as chemotaxis, appears to involve multiple pathways
[see Bagglioni and Wymann, 1990, for review] and is initiated through the
receptor-mediated stimulation of PIP, metabolism with consequent increases
in internal calcium levels. One emerging scenario for regulation of the oxida-
tive burst is that NADPH oxidase is activated by three mechanisms, all of
which may be active under normal physiological conditions. The first is a
calcium-dependent mechanism that is part of the ““classic’” signal transduction
liberating DAG and calcium via IP; and possibly 1Ps. This mechanism is
supported by the observation of calcium ionophore A23187 and ionomycin
stimulation of the oxidative burst and the inhibition of this stimulation by
trifluoperazine [see Sha’afi and Molski, 1988; and Grinstein and Furuya, 1988,
for details).

The second is a protein kinase C—dependent mechanism that requires a min-
imum but not a change in the internal levels of calcium [Wymannetal., 1987,
Grinstein and Furuya, 1988). Indeed, some of the strongest evidence comes
from PMA induction of the oxidative burst and inhibition of this induction by
protein kinase C inhibitors [Grinstein aand Furuya, 1988; Sha'afi and Molski,
1988). Additionally, PMA pretreatment can circumvent this inhibition of the
oxidative burst, PLC activation, and production of IP; and DAG brought about
by buffering internal calcium with Quin-2 [Lew et al., 1984]. The presence of
these first two mechanisms, one calcium dependent and the other protein kinase
dependent, would fit with the observed synergism of calcium and DAG or
permeable analogs [White et al., 1984; Volpi et al., 1985].

The third pathway is a very rapid NADPH oxidase activation that is not
dependent on calcium and may be an effect of the lipid environment on the
membrane-bound enzyme [Grinstein and Furuyma, 1988].

Truett et al. [1988] and Reibmann et al. [1988] have compared leukotriene
B4 and FMLP for their internal messenger production, because, while they
are equipotent as chemotaxis stimuli, they are very different in their ability to
stimulate the oxidative burst. In these comparisons, leukotriene B4 and FMLP
elicited similar initial increases in calcium, IP;, IP,, and DAG (<30 sec), but
FMLP sustained the increased calcium and IP; levels and elicited a second
peak of DAG (at ~120 sec). This second peak of DAG was not derived from
phosphoinositol lipid hydrolysis and probably was dependent on the sustained
higher calcium levels. These results predict that a stimulus that supports a
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sustained phosphoinositol lipid hydrolysis will also sustain increased calcium
levels not only by liberating internal stores but also by stimulating influx from
external sources (possibly mediated by calcium-stimulated calcium conduc-
tance or possibly IPy-gated channel [Bagglioni and Wymann, 1990}. This pro-
longed new high level of internal calcium will elicit a second wave of DAG
production perhaps from phosphatidylcholine. The DAG may participate in
protein kinase C membrane translocation for the oxidative burst, because
leukotriene B4 that fails to elicit much of a burst also fails to stimulate much
translocation [Nishihara et al., 1986).

The substrates of protein kinase C are being cataloged and include a 60 kD
protein that is associated with the activation of the Na*/H* antiporter by
FMLP, possibly the a-subunit of the G protein that activates PLC; a 47 kD
protein associated with degranulation; and several membrane- and cytoskeleton-
associated proteins [White et al. » 1984; Suzukiet al., 1990]. These substrates
will be the next components of the multiple pathways to be fit into the puzzle
of the neutrophil sensory transduction.

Activation of the calcium—phospholipid-dependem protein kinase C includes
its translocation from cytosolic to membrane compartments of the cell. The
binding to the DAG that is transiently present because of hydrolysis of phos-
phoinositol lipids brings the enzyme in contact with the membrane and low-
ers the calcium requirement [Sha’afi and Molski, 1988]. It is tempting to
speculate that priming of neutrophils (i.e., synergistic enhancement of respi-
ratory burst by pretreatment with low concentrations of agonists) also could
be due to the translocation of the protein kinase C to the membrane, where it
stands ready for immediate response to stimulus, This would fit with Alkon
and Rasmussen’s idea [1988] of biochemical memory. However, priming as
with all aspects of neutrophil physiology, is not simply accounted for by pro-
tein kinase C translocation, but alternatively may be due to protein kinase C
activation in the cytosol by increased calcium or possibly to the actions of AA
[Bass et al., 1987; Costa-Casnellie et al. » 1986; Korchak et al., 1984].

As depicted in Figure 5, the D. discoideum transduction systems are two-
fold, with one set of receptors (A sites) associated with the adenylate cyclase
of the relay and another set of receptors (B sites) poised to activate the
cytoskeletal alterations necessary for chemotaxis by way of PIP, hydrolysis,
calcium liberation, and production of cGMP. The implication of IP; comes
from its mobilization of calcium from internal stores and polymerization of
actin when applied to permeable cells [Newell et al., 1988]. Additionally,
*H-inositol was used to trace the increased cycling of phosphoinositol lipids
through IP; with cAMP stimulation [Europe-Finner and Newell, 1987a). The
liberation of calcium was found to be downstream from the phosphoinositol
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tion of IP; formation [Newell et al., 1988). The actin polymerization in slime
mold amoebae is not sustained [Newell et al., 1988], but exhibits a cyclical
change in polymerization—depolymerization-repolymerization that corresponds
to the initial pseudopod extension, rounding up (cringing), and cell elonga-
tion necessary for oriented movement. Calcium seems to be directly responsi-
ble for these cycles of F-actin formation [Newell, 1986]. Calcium also activates
the guanylate cyclase, and the resultant cGMP in turn regulates the associa-
tion of myosin with the cytoskeleton, independent of calcium [Liu and New-
ell, 1988]. Presumably the actin and myosin associate with the cytoskeleton
and contribute to orientation and motility. Chemotaxis, although not completely
normal, occurs in the absence of myosin Il heavy chain [Knecht and Loomis,
1987; DeLozanne and Spudich, 1987; Wessels et al., 1988], while actin poly-
merization correlates with pseudopod extension in Dictyostelium and neutro-
phils {Devreotes and Zigmond, 1988]. In light of redundant functions within
cells, interpretation of these results are suggestive but not conclusive that actin
and not myosin I1 is necessary for chemotaxis. ,

The phosphatidylinositol metabolism of slime molds is being determined
by Van Haastert’s group in as much detail as in neutrophils, and it is indeed an
integral part of the sensory transduction in Dictyostelium. 1t is interesting that
both the neutrophil and D. disoideum amoebae polymerize actin in prepara-
tion for chemotaxis, but that in D. discoideum the internal levels of calcium
appear to be sufficient to account for the state of F-actin [Newell, 1986], whereas
in neutrophils acidification may also be necessary [Yuli and Oplatka, 1987].

To account for the odorants that do not activate adenylate cyclase and other
considerations of the adenylate cyclase as transducer [Anholt, 1987}, the PIP,
hydrolysis in olfactory epithelium has been scrutinized. GTP and odorants stim-
ulate IP; production in ciliary preparations of catfish olfactory tissue [Huque
and Bruch, 1986; Bruch and Huque, 1987] and do so more than additively when
odorant is combined with GTP [Bruch et al., 1987). L-alanine and L-arginine
bind to distinctly separate receptor sites whose affinities are regulated by guanine
nucleotides [Kalinoski and Bruch, 1987], and both amino acids elicit rapid
(<15 sec) two-to threefold increases in IP; in a GTP-dependent manner [Bruch
et al., 1989]. (The catfish olfactory PLC that is responsible for generating
IP, is being characterized [Boyle et al., 1987).)

The L-amino acid-stimulated EOG of catfish olfactory receptor cells is abol-
ished with the removal of extenal Ca®*, and Ca?* channel blockers and
patch-clamping of the receptor cell membranes reveal an IP;-gated calcium
channel [Restrepo et al., 1990]. Therefore in catfish two parallel receptor-G
protein pathways exist, one coupled to PLC that increases IP; and thereby
directly activates Ca channels and another coupled to adenylate cyclase that
increases cAMP and thereby activates cation channels [Restrepo et al., 1990;
Bruch and Teeter, 1989]. The relationship of the receptors, G proteins, and
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channels within a single cell is of great interest because of the extra latitude
multiple pathways provide for integration of information at the periphery and
for cross-talk between pathways.

The IP; pathway in olfaction promises to be a common theme across phyla.
In rat olfactory cilia and in moth antennae, odorants or pheromones can elicit
an extremely rapid, GTP-dependent peak of IP; [Breer et al., 1990a,b}, qual-
ifying IP; as a second messenger. However, unlike in catfish, the set of odor-
ants that stimulate IP; in rat olfactory cilia is not overlapping with the set that
activate adenylate cyclase, and the rate of CAMP accumulation is clearly fast
enough to qualify it as a second messenger [Breer et al., 1990a,b; Breer and
Buekoff, 1991; see Restrepo et al., 1990, and Bruch and Teeter, 1989].

Similarly, in catfish raste tissues, the tastant L-alanine rapidly stimulates
1P, formation, as does Na-fluoride (NaF) [Huque et al., 1987; Huque and
Brand, 1988}, implicating a GTP-dependent system for taste. Bitter stimuli
elicit increases in internal calcium from internal stores {Akabas et al., 1987,
1988], also indirectly pointing to IP; as an internal messenger [see Teeter and
Gold, 1988, for a review]. The details of the involvement of PLC in taste and
olfaction remain to be elaborated.

D. Calcium, pH, and Membrane Potential

Calcium, pH, and membrane potential are grouped together because often
changes in one are inseparable from changes in the other two. Calcium has
been described in some detail earlier (see sections I1.B. and II.C.). Briefly,
calcium figures into cytoskeletal changes in F-actin for neutrophil chemotaxis
and into at least one pathway in oxidative burst. Lamellepodia are the sites of
F-actin formation for pseudopod extension and also the site of at least some of
the elevated Ca?* during chemotaxis {Sawyer et al., 1985; Jaconi et al., 1988).
However, calcium-sensitive dyes over very short sampling times (0.5 sec) show
no consistent localization of Ca?* during chemotaxis [Marks and Maxfield,
1990a,b].

H* content and membrane potential (Vm) have been shown to change rap-
idly with FMLP stimulation {see Sha'afi and Molski, 1988, for review]. There
is a rapid (maximal in <10 sec) K*-dependent hyperpolarization that usually
is masked by a subsequent depolarization when FMLP exceeds 10~ °M [Lazzari
etal., 1990]; a rapid acidification follows the depolarization time course and is in
turn followed by a more slowly developing H* extrusion by an Na*/H*
antiporter that is activated probably by protein kinase C {see Sha'afi and Molski,
1988, and Fletcher and Seligmann, 1986, for discussion). Yuli and Oplatka
[1987] suggest that the transient rapid acidification is responsible for trigger-
ing the rearrangement of the cytoskeleton in preparation for actin polymeriza-
tion and chemotaxis. Fletcher and Seligmann [1986] [although not others;
see Lazzari et al., 1990] have found a correlation between the depolarization,
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which varies greatly in individual cells from a neutrophil population, and the
oxidative burst. The slower alkalinization caused by the activity of the Na*/H*,
amiloride-sensitive antiporter can be inhibited with no significant effect on
the stimulated cell responses [Sha’afi and Molski, 1988].

Calcium figures prominently in the D. discoideum sensory transduction path-
way that results in chemotaxis (Fig. 5). The source of this calcium is internal,
nonmitochondrial stores, and apparently calcium is mobilized from these stores
by IP; {Newell, 1986). Calcium levels correlate with the polymerization of actin
[Newell, 1986], and, as in neutrophils [Cassimeris et al., 1990}, it is not quite
clear how the polymerization is controlled and localized for pseudopod forma-
tion and motility. Calcium also acts to stimulate guanylate cyclase activity. The
enzyme in vitro is not sensitive to calcium levels; therefore the details of how
calcium regulates this enzyme are not yet clear {see Newell et al., 1988, for
discussion]. Depolarizing changes can be made membrane potential with no
consequences for chemotaxis or cGMP accumulation with stimulation by cAMP
[Van Duijn et al., 1990}, and therefore membrane potential seems to have no
role in the chemotaxis sensory transduction pathways of these amoebae.

In spermatozoan activation by resact, there must be a calcium influx from
external sources both to activate the adenylate cyclase and to elicit chemo-
taxis (Fig. 6). Calcium and not a receptor— or G protein—adenylate cyclase
interaction modulates the enzyme activity. Although the sources of calcium
may differ, there are interesting parallels of the calcium regulation of guanylate
cyclase activity in D. discoideum amoebae with the direct calcium activation
of adenylate cyclase in spermatozoa and Chlamydomonas. Calcium influx is
an absolute requirement for chemotaxis in spermatozoa. Although there also
is a resact stimulation of H* efflux, this alkalinization is slow and cannot
account for some of the initial response of sperm to ligand binding. However,
there may be yet undescribed roles for the ligand-activated H* efflux, because
internal pH correlates with activation of motility and exposure of sea urchin
sperm to pH 9 buffers causes reversible dephosphorylation of the guanylate
cyclase—resact receptor similar to that caused by resact [Trimmer and Vacquier,
1986, for review; Garbers et al., 1986; Garbers, 1989a,b}.

On a similar note, the cAMP that serves as a second messenger in Chlam-
ydomonas agglutination responses is generated by a calcium—calmodulin
(CM)-dependent adenylate cyclase [Pasquale and Goodenough, 1987]. CM
inhibitors block postadhesion responses; cAMP relieves this block. The inhibi-
tors also reduce adenylate cyclase activity in vitro. Calcium ionophores do
not elicit the agglutination responses, implying that perhaps a minimum level
of calcium is necessary for enzyme activation and that sensory transduction
does not include an increase in internal calcium.

Taste cells function by releasing neurotransmitters that in turn stimulate the
synapsing neurons. Calcium presumably is a requirement for neurotransmit-



104 Van Houten

ter release, and there are several potential mechanisms by which internal cal-
cium levels are raised preparatory to release: Voltage-sensitive calcium channels
are opened by cell depolarization through an increased influx of cation through
passive or ligand-gated channels, increased membrane resistance or surface
potential, or ligand—receptor interactions that result in second messengers that
inhibit ion pumps. Alternatively, in the instances when cells do not change
input resistance, second messengers may be liberating calcium from internal
~ stores [see Tecter and Brand, 1987a,b for discussion]. Only in the case of
sour taste is calcium thought both to carry the depolarizing current and to
stimulate release of neurotransmitter [Sato et al., 1987]. Taste cell transduc-
tion varies greatly with cell type, and it is likely that all these mechanisms of
increasing internal calcium are at work.

Paramecia respond to chemical stimuli with a change in membrane potential
that is predictable from their change in swimming, hence ciliary beating pattemns
{Van Houten, 1979). Ciliary beating frequency and angle (hence efficiency of
swimming) are controlled by Vm {Machemer, 1976, 1989). The electrophysio-
logical bases of the change in Vm have been elusive; the hyperpolarization
in response to folate or acetate is not dependent on either extenal K* or
Na*, has no reversal potential, correlates with a small increase (for folic acid)
or decrease (for acetate) in membrane resistance, and is perhaps due to the
activation of a calcium pump activity [Preston and Van Houten, 1987a). Cal-
cium efflux has been implicated in yet other ways: Lithium, which causes an
inhibition of chemoresponse, reduces the normal calcium efflux and appar-
ently the normal functioning of the surface Ca?*-ATPase pump [Wright and
Van Houten, 1988, 1990; Van Houten et al., 1991b]; a mutant, K-shy [Evans et
al., 1987], with defects in calcium homeostasis is not responsive to most stim-
uli [Van Houten, 1990]. Not all responses to attractant stimuli are affected by -
lithium, and the stimuli have been divided into groups based on this lithium
effect [Van Houten et al., 1991b]. Interestingly, the stimuli that are thought to
stimulate the Ca?*-ATPase to generate the hyperpolarization elicit a lithium-
sensitive response and are not attractants to mutant X-shy, while NH,Cl, for
example, that is thought to affect internal pH and not affect Ca?*-ATPase
through a receptor-mediated mechanism, does not elicit a lithium-sensitive
response, and serves as a good stimulus for K-shy {Van Houten, 1990]. There-
fore the working hypothesis is that the 0.2 namp current that is elicited by
folate stimulation of cells, for example, could be accounted for by a voltage-
insensitive calcium pump current (Van Houten and Preston, unpublished data).

The Ca?*-ATPase activities of the complex surface membranes (pellicle)
of Paramecium have been partially characterized [Wright and Van Houten,
1990], and a corresponding protein has been identified both as a
intermediate and as a calmodulin-binding protein [Wright and Van Houten,
1990, and unpublished data), but a definitive demonstration of its role in che-



Signal Transduction in Chemoreception 10§

mokinesis has yet to be made. Calcium pump fluxes may also contribute to
the calcium fluxes of FMLP-stimulated neutrophils and Dicryostelium [Foder
etal., 1989; Bohme et al., 1987). :

Both pH and Vm contribute to the proton motive force (PMF) that is the
energy source for the gram-negative bacterial flagella [Boyd and Simon, 1982].
Levels of PMF also appear to be sensed by the flagellar switch that is respon-
sible for the bacterial chemoresponse. In particular, oxygen concentrations
affect Sal. typhimurium swimming; the **aerotaxis™ pathway by-passes the
MCPs and other membrane receptors but does converge with the other chemo-
response pathways at the flagellar switch for clockwise and counterclockwise
rotation. Shioi and Taylor {1984] find that *‘aerotaxis™ is mediated not by pH
or Vm alone but by the PMF. Likewise in the photosynthetic bacteria Rhodob.
sphaeroides, the response of the cells o light or O, depend on the PMF gen-
erated by electron transport, but not on the electron transport directly [Amitage
etal., 1985].

E. Integrating Multiple Messengers

It should be evident from the descriptions of neutrophils, D. discoideum,
olfaction, and taste systems that multiple internal messengers are set loose upon
chemostimulation. Some are necessarily generated together, as in PLC action
on PIP; to produce IP; and DAG. However, DAG can come from other sources
and apparently does in neutrophils. Others are generated separately, like cAMP
and calcium, but work either synergistically or in opposition to control
physiological responses [Rasmussen, 1981; Alkon and Rasmussen, 1988].
While control by and presence of multiple messengers is not new [Belardetti
and Siegelbaum, 1988; Imagawa et al., 1987; Rasmussen, 1981], it compli-
cates the neat dissection of the sensory transduction pathways, particularly if
the pathways are not parallel but interactive.

Multiple messengers can be generated by separate sets of receptors or the same
set causing a cascade of sequential messenger production. The sensory trans-
duction pathways in D. discoideum appear to have two sets of cAMP receptors
coupled with different G proteins (frgA product vs. G,) that stimulate PLC and
adenylate cyclase, respectively, along two separate sensory transduction path-
ways. Within the PLC pathway, IP;, calcium, and ¢cGMP all are generated and
calcium, in particular, has further multiple effects. In neutrophils, it still is
debatable whether multiple receptors or one population of receptors associated
with different G proteins or other effectors allows the cells to respond dif-
ferentially to a range of concentrations of stimuli or over different time courses
and to have such a large repertoire of intracellular effects. Likewise, in olfac-
tion and taste it is becoming clear that the cell population is heterogeneous
and that several transduction pathways can exist within one cell with respon-
siveness to more than one stimulus, i.e., more than one receptor (see section
IV.C. for a discussion of the interactions of cyclic nucleotides and Vm).



106 Van Houten

1V. TRANSDUCTION MECHANISMS
A. An Overview

Signal transduction begins with the stimulus—receptor interaction and ends
in a response such as directed motility or synaptic transmission. The signal is
first an external chemical cue and is transformed into an internal, diffusible
messenger. The transfer of information from receptor to effector enzyme that
produces the internal messenger very often is mediated by a G protein. G pro-
teins are implicated in activation of adenylate cyclase, PLC, and phospholipase
A; and in opening ion channels directly [Gilman, 1987; Axelrod et al., 1988;
Dunlap et al., 1987; Miller, 1988]. However, G proteins are not the exclusive
agents that trransfer information to enzymes or jon channels. Calcium can do
this directly [Hockberger and Swandulla, 1987}, as can Vm (see section[I1.D.).
Cyclic nucleotides interact with some ion channels directly [Hockberger and
Swandulla, 1987] or indirectly influence the activity of enzymes and channels
through protein kinases (Edelman et al., 1987; Hanks et al., 1988). Likewise,
there are calcium- and CM-dependent protein kinases. An interesting exception
to this pattern of diffusible internal messengers is the bacterial chemoresponse
system. Here information is passed from protein to protein as a phosphoryla-
tion without intervention of a diffusible messenger. The yeast mating system
may involve G proteins without diffusible messengers and be yet another inter-
esting exception in sensory transduction.

B. G Proteins

In receptor-mediated sensory transduction, often a G protein is interfaced
between the receptor and effector enzyme that generates the internal messen-
ger. The control adenylate cyclase by stimulatory (G,) and inhibitory (G) G
proteins is now a classic example, as is transducin inhibition of the cGMP-
phosphodiesterase in retinal cells [Stryer and Bourne, 1986] (the reader is
referred to one of several reviews of G protein function for details [Stryer and
Bourne, 1986; Gilman, 1987; Neer and Clapham, 1988]). A brief sketch of
G protein function is as follows: G proteins are multimeric, consisting of a-,
8-, and y-subunits. GDP is bound to the a-subunit, and upon ligand binding
to receptor there is a conformational change transduced to the a-subunit facili-
tating its binding of GTP. In this bound form, the a-subunit dissociates from
the B- and y-subunits and is active in stimulating or inhibiting its target enzyme
or channel. The a-subunit also has GTPase activity, and, upon hydrolyzing
GTP to GDP, the a-subunit becomes inactive and reassociates with the 8- and
Y-subunits and the receptor. The complexity of control of G proteins is becom-
ing evident as accessory proteins that influence G protein function (eg., by
activating GTPase activity) are being characterized {Parsons, 1990]. Addi-
tionally, there are increasing numbers of reports of functions for the B- and
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¥-subunits in transduction, but these are controversial at present {Neer and
Clapham, 1988; Dunlap et al., 1987]. Cholera and pertussis toxins ADP-
ribosylate and thereby perturb the functions of the a-subunit [Neer and
Clapham, 1988].

The criteria for the involvement of G proteins in a sensory transduction
process are [Gilman, 1987] 1) both ligand and GTP are required to initiate the
response; 2) nonhydrolyzable analogs or NaF should provoke the response; 3)
there should be a decreased affinity in ligand binding in the presence of GTP,
and, conversely, ligand should enhance the binding of GTP to membranes; 4)
cholera or pertussis toxin or antibodies against G proteins could perturb the
response; and 5) reconstitution of the pathway in vitro and dependence on
GTP and a G protein for the response are the ultimate criteria.

Both calcium and protein kinase C are heavily implicated in neutrophil che-
motaxis and oxidative burst (see above). Both calcium and protein kinase C
are modulated by PIP; metabolism, calcium by IP3, [P, and AA, and protein
kinase C by DAG and calcium. Therefore the major second messengers are
IP; and DAG and third messengers are calcium, AA, and possibly IP,. The
generation of these messengers is dependent on G proteins at several levels.

Neutrophil receptors are coupled to PLC through G proteins. The evidence
for this includes the requirement for GTP and FMLP to stimulate PIP, hydrol-
ysis in membrane preparations; the same hydrolysis is inhibited by pertussis
toxin; guanine nucleotides regulate receptor affinity; FMLP stimulates GTP
binding and GTPase activity in membranes [Dillon et al., 1987a,b; Cockroft,
1987; Sklar et al., 1987]. The a-subunit involved is not the same as that in G;
or G,, but instead is a smaller G, a-subunit that is substrate for both pertussis
and cholera toxins [Cockroft, 1987; Polakis et al., 1988; Sha’afi and Molski,
1988]. A pertussis toxin substrate that can be copurified with the receptor
decreases affinity of receptor for FMLP upon GTP binding [Polakis et al.,
1988]. This 40 kD protein is the likely candidate for G, a-subunit.

Neutrophil phospholipase A, apparently is regulated by interactions with a
G protein {Burgoyne, 1987]. Additionally, the sustained high calcium levels
from calcium influx may be mediated by a G protein interaction separate from
the one regulating PLC [Nasmith and Grinstein, 1987a,b; Lu and Grinstein,
1990], as may some of the other aspects of neutrophil activation that Sha'afi
and Molski [1988) have cataloged as pertussis toxin sensitive: chemotaxis;
degranulation; oxidative burst; aggregation; rise in intracellular Ca?*; actin
polymerization; PI, PIP, and PIP, hydrolysis; Na* influx; increase in intracel-
lular H*; increase in internal pH; protein phosphorylation; membrane potential
change; GTPase activity; AA release; and generation of phosphatidic acid,
phosphatidylinositol, IP,, and IP;.

There are several lines of evidence that G proteins are integral parts of the
D. discoideum sensory transduction. At the receptor level, GTP affects the
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binding of CAMP to the cell surface receptors of both the relay and chemo-
taxis pathways [Janssens and Van Haastert, 1987), and cAMP and folic acid
increase binding of GTP to membranes {Janssens and Van Haastert, 1987,
Snaar-Jaglaska et al., 1988). In the relay pathway, GTP modulates activity of
the adenylate cyclase [Thiebert et al., 1984; Van Haastert et al., 1987a,b]. In
the chemotaxis pathways, GTP and analogs stimulate [P, formation, as does
the stimulus cAMP [Europe-Finner and Newell, 1987a,b}. Synchronized cells
exhibit oscillations of IP; and cGMP with cAMP stimulation and likewise
with GTPyS treatment.

An interesting study of the D. discoideum ras protein (an oncogene product
member of the family of smaller GTP-binding protein) implicates separate G
proteins in the chemotaxis and relay sensory transductions [Europe-Finner et
al., 1988; Van Haastert et al., 1987a,b). Dictyostelium cells transformed with
the homolog of the normal, human protooncogene (gly-12) aggregated nor-
mally, while those transformed with the homolog of the human activated
oncogene (thr-12) showed abnormal chemotaxis, probably because of IP; levels
clevated two to three times over basal levels. The oscillation in IP; normally
induced by cAMP was aberrant and started from a higher basal level in trans-
formants. In the same cells, the adenylate cyclase relay was not affected.

A modification of the G protein—receptor interaction appears to be responsible
for adaptation, i.e., the unresponsiveness of cells toa second pulse of cCAMP
given within 30 sec of the first. There is no adaptation apparent if GTPYS, IPs,
orcalciumisusedtobypassﬂlcreceptorandstanﬂ)enansducﬁonpaﬂxmydwn-
stream from the ligand—receptor interaction [Small etal., 1987]. However, GTP
S cannot circumvent adaptation produced by cAMP binding to receptor. There-
fore, adaptation must somehow involve the G protein—receptor interaction.

An interesting question for both neutrophils and D. discoideum regards the
number of G proteins associated with receptors. There are separate G proteins
coupled to the cAMP and folate receptors [Kesbeke et al., 1990). Are there two
or more classes of G proteins to account for the divergent pathways? If, as Sklar
argues for neutrophils, all receptors are functionally coupled, how can the number
of receptors occupied translate into chemotaxis vs. oxidative burst and degran-
ulation responses? Alternatively, are receptor populations different? If so, are
the G proteins associated with them different? The availability of mutants has
contributed significantly to the dissection of G protein function in Dictyostelium.
Synag mutants are defective in interactions between G protein and the relay
adenylate cyclase, but the defects probably do not lie in the G protein itself [Snaar
Jaglaska and Van Haastert, 1988}, while fedA, mutants in a different gene, are
no longer able to couple receptor to G protein properly yet GTP can activate
their adenylate cyclase [Kesbeke et al., 1988]. Therefore the two transduction
pathways (Fig. 5) appear to be mediated by separate G proteins, and the receptor
coupled G protein a-subunit has been identified among several cDNA clones
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for G proteins as Gy, [Johnson et al., 1989]. Small ras-like G proteins are
present in Dictyostelium, and their overexpression or alteration affects chemo-
sensory transduction possibly through the activation of protein kinase C
(Robbins et al., 1989; Luderus et al., 1988]. However, it is not yet clear how
these ras G proteins fit into the normal transductions pathways, if at all.

In both olfaction and taste there are two effector enzymes (adenylate cyclase
and PLC) that are coupled to G proteins. Either or both are activated in a stim-
ulated cell; both enzymes may function in sensory transduction and perhaps
adenylate cyclase adaptation [Anholt, 1987). Itis clear, however, that G proteins
play major roles in sensory transduction in olfaction and taste tissues. The lines
of evidence for G proteins in olfaction are 1) GTP dependence of adenylate
cyclase and PLC, 2) presence of G proteins in appropriate tissues, and 3)
influence of GTP on stimulus binding. Only GTP dependence of adenylate
cyclase and PLC has been established for taste [see Bruch, 1990a,b, for reviews).

. L. Inolfactory epithelium, from all sources, the adenylate cyclase is GTP de-
pendent, and in frogs and mammals in particular the activation of adenylate cy-
clase by odorants requires GTP [Sklar et al., 1986; Lancet and Pace, 1987; Pace
and Lancet, 1986]. The adenylate cyclase of catfish olfactory cilia also is acti-
vated by GTP, but Bruch and Teeter [1988] have found that odorant stimulation
is not likely to work through the classic G, mechanism, despite the presence of G
in both catfish and other olfactory cilia [Bruch et al., 1987]. In pseudoparathy-
roidism patients, the G; is defective, making modulation of adenylate cyclase
by some hormones impossible [Carter et al., 1987; Weinstock et al., 1986).
Because such patients have deficits in olfactory function, there may be a role
for G, in mammalian and perhaps frog adenylate cyclase, while a different
mechanism is at work in the catfish.

In 1aste tissues from catfish, the adenylate cyclase is GTP dependent and
rapidly activated by tastant [Kalinoski et al., 1989a; Bruch et al., 1987].
Likewise, in rat the adenylate cyclase is activated by sugar in a GTP-dependent
manner [Lancetetal., 1987].

The alternative transduction pathway in taste and smell is similarly depen-
dent on GTP. The PLC of both olfactory and taste tissues of the catfish are
both stimulus and GTP dependent [Bruch et al., 1987, 1989; Huque and Bruch,
1986, Huque et al., 1987).

2. Five cDNA clones for different GTP-binding proteins and the protein coun-
terparts of G;, G;, and G, have been identified with molecular genetic and
immunological probes in rat and frog olfactory epithelium [Jones and Reed, 1987;
Anholt et al., 1987]. A sixth cDNA clone was found to code for a G protein
specific to the olfactory epithelium (Ggy) [Jones and Reed, 1989). In a com-
parison of three species, Pace and Lancet [1986] isolated a 42 kD G protein and
demonstrated that this G protein activates the adenylate cyclase and can be
ADP-ribosylated by cholera toxin. Similarly, in catfish olfactory cilia, a G,
a-subunit cholera toxin substrate (45 kD) and a pertussis toxin substrate of 40
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kD have been identified [Bruch et al., 1987). However, the only G protein that
has been identified in taste tissues are the catfish a- and B-subunits of G,
and the 41 kD form of G; [Bruch and Kalinoski, 1990; Bruch, 1990a).

3. Bruch and Kalinoski [1987]) measured binding of L-arginine and L-alanine
that serve as both odorants and tastants to catfish and found that GTP decreases
-affinity of binding to the separate receptors by 1 order of magnitude in olfac-
tory but not taste membranes. L-arginine opens channels from taste membranes
directly [Teeter and Brand, 1987a; Teeter et al., 1987b), thereby obviating the
need for a G-coupled receptor. However, the mechanism of the L-alanine stim- -
ulation of adenylate cyclase and PLC in a GTP-dependent manner in the
apparent absence of a G-coupled taste receptor remains unclear.

The two lines of evidence for G protein interaction in the Yeast mating type
system are indirect yet compelling. First, the receptors resemble rhodopsin in
their structure and therefore have been assigned to the family of receptors that
are G protein coupled (Fig. 10). Second, two investigative groups have cloned
the yeast gene for a protein homologous to the G, a-subunit. Disruption of
this gene leads to growth arrest in G,, which is characteristic of haploid cells
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Fig. 10.  Schematic of the response pathway in a cells t0 a-factor. The genes shown are involved
in the response to pheromone that leads to transcriptional induction. The pathway apart from
pheromone and receptor appears to be the same in a-cells. (Reproduced from Ficlds, 1990, with
permission of the publisher.]
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exposed to mating pheromone [Dietzel and Kurjan, 1987, Miyajima et al.,
1987). Diploid cells are unaffected by mating pheromones and are also not
growth arrested by the disruption of the G protein gene. No second messenger
such as calcium or cAMP seems to evolve from interaction of G protein with
effector enzyme [Herskowitz and Marsh, 1987]. Instead, it has been proposed
that, in the absence of mating factor, the G protein is in the trimeric GDP-
bound form and upon mating factor stimulation it is bound with GTP [Dietzel
and Kurjan, 1987; Miyajima et al., 1987}. Dietzel and Kurjan [1987] pro-
posed that the GDP-bound form of the G protein acts as an inhibitor of some
effector, allowing the cell to traverse the cell cycle. When mating factor is
bound to receptor, and the GTP-bound form G protein predominates, the affin-
ity for effector is reduced and the effector is free to produce the cell cycle
arrest; and the effector could be the B- and y-subunits. Additional genetic and
biochemical information is necessary to sort through the multiple models that
are proposed for G protein function in yeast mating response [see Kurjan,
1990, for review].

C. Cyclic Nucleotides and Membrane Potential

The response of paramecia to organic, chemical stimuli includes an imme-
diate hyperpolarization and a change to smoother, faster swimming [Van Houten,
1978, 1979]. Presumably the cilia are beating faster and at an angle that facili-
tates movement. Both membrane potential and cyclic nucleotides are impli-
cated in the control of ciliary beating [Bonini et al., 1986; Gustin and Nelson,
1987: Bonini and Nelson, 1988; Nakoaka and Ooi, 1985; Majima et al., 1986;
Klumpp et al., 1984; Schultz et al., 1984). The induction of faster ciliary
beating by hyperpolarization (without the complication of altered surface charge)
or by cAMP is not in dispute; it is the causal relationship between the two that
is complex and not yet clear.

cAMP injected into paramecia hyperpolarizes them, and their cilia increase
beating frequency [Hennessey et al., 1985]. Voltageclamping of the mem-
brane prevents this increased frequency, and yet experiments with permeabilized
cells (hence with no means of altering their membrane potential) show that
cyclic nucleotides can increase the frequency of ciliary beating directly [Bonini
et al., 1986; Bonini and Nelson, 1988; Majima et al., 1986]. It is significant
that not all the modulation of speed can be attributed to internal cAMP levels;
in an intact cell where membrane potential was regulated by external K* levels,
increases in internal cAMP (attained by incubation in permeant analogs of
cAMP) did increase swimming speed, but the absolute speed was a function
of both the Vm and cAMP levels [Bonini et al., 1986]. Therefore,it will be
important to sort out the contributions of nucleotide-dependent phosphoryla-
tion of axonemal proteins and the effects of both hyper- and depolarizing mem-
brane potential changes on the function of the cilium,both as the motor end of
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the Paramecium chemosensory response pathway and for its relevance to yet
other systems including sperm [Tash et al., 1986) and ciliated epithelium
[Nelson and Wright, 1974; Satir, 1985; Brokaw, 1987], and perhaps ciliated
olfactory epithelium.

D. Cyclic Nucleotide- and Ligand-Gating of Ion Channels

There are examples in the literature of ligands that activate one of the fam-
ily of G protein—coupled receptors that activate ion channels indirectly [Dohlman
etal., 1987] and of other ligands that activate channels directly {Stevens, 1987;
Barnard et al., 1987]. Likewise, the second messengers that are generated in
the G protein—associated systems can activate channels directly [Hockberger
and Swandulla, 1987; Kuo and Gardner, 1987] or indirectly through protein
kinase activities [Edelman et al., 1987; Hanks et al., 1988; Kikkawa and
Nishizuka, 1986). In olfactory systems and taste, there are observations of
stimulus activation of G protein—dependent adenylate cyclase and PLC, cyclic
nucleotide—and IP;-activated conductances, direct odorant activation of con-
ductances, and even direct odorant activation of adenylate cyclase, presumably
through perturbation of lipid environment around the enzyme, in melanocytes
that ought not to have odorant receptors {Lerner et al., 1988]. Therefore it
remains to be seen which of these mechanisms is at work in olfaction and taste
or, more aptly perhaps, how they are distributed across receptor cell types
and whether they are associated with specific stimuli.

E. Bacterial CheY Protein

The bacterial chemoresponse systems seem to function without the internal
messengers and components of the eukaryotes: cyclic nucleotides, calcium, Vm,
IP;, DAG, or G proteins. Indeed, no prokaryotic G proteins that control enzyme
activity have been identified [Janssens, 1987]. Instead, the bacterial pathways
seem to pass on the signal from protein to protein until it reaches the CheY
protein that can interact directly with the switch to promote clockwise rotation
(Fig. 3)[Ravid et al., 1986; Eisenbach and Matsumura, 1988]. The information
passes from receptor—MCP to CheA as a phosphorylation, possibly mediated
by CheW (Fig. 3) [Parkinson, 1988; Hess et al., 1988; Oosawa et al., 1988;
Gegner and Dahlquist, 1991]. CheA in turn can be found in a complex with
CheZ and CheY, and the CheA phosphate is rapidly passed on to CheY (and
also to CheB). Upon phosphorylation of CheY, the phosphate has reached the
protein that interacts directly with the flagellar switch. CheY can directly pro-
mote clockwise rotation in bacterial envelopes with flagella attached. CheZ acts
as an antagonist to CheY and promotes counterclockwise rotation, but the flagella
of envelopes will rotate counterclockwise without the presence of CheZ, imply-
ing that CheZ interacts with CheY to achieve the antagonism and does not inter-
act directly with the flagellar switch. Presumably the phosphorylated form of
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CheY is active in the switching function; the phosphate of CheY is rapidly
transferred to CheZ, which accounts for the antagonism by CheZ. An important
aspect yet being clarified is the nature of the CheA and MCP interaction that
starts this phosphorylation cascade.

A common signalling motif is emerging for prokaryotes [Parkinson, 1988;
Stock et al., 1989; Stock, 1987; Ronson et al., 1987]. Bacterial proteins with
known * ‘uansmitter" modes and those with known ““receiver’” modes in signal
transduction are being compared among themselves. It appears that CheA is
one of the transmitter family, with CheY receiving its signal in the form of a
phosphorylation. The transmitters have kinase domains, and the receivers have
phosphate acceptor sites. Phosphorylation has been developed to a high degree
in prokaryotes to serve in sensory transduction processes.

V. FUTURE DIRECTIONS

One challenge for future research in chemosensory transduction is the isolation
and characterization of receptors. To date only four receptors from unicellular
organisms have been purified and cloned. Peripheral receptors have remained
technically difficult to isolate, but their isolation and characterization will be
important in understanding their structure and function. Molecular genetics,
which has been used successfully to clone neurohormone receptors [Koblika et
al., 1988; Kerlavage et al., 1987; Boulter et al., 1986; Bamard et al., 1987],
will be employed in this task, as will more immunological techniques {Fraser
and Lindstrom, 1984; Bryant et al., 1987; Kalinoski et al., 1987; Price and
Willey, 1988]. Because many receptors appear to fall into classes based on
amino acid sequence (e.g., G-coupled vs. direct ion channel-gating), the gene
sequence of a chemosensory receptor could give clues about its regions of poten-
tial G protein interactions or functions as ion channels [Koblika et al., 1988;
Barnard et al., 1987] and uncover some consensus features unique to peripheral
chemoreceptors.

A necessary process that is currently underway is the cataloging of stimulus-
related G proteins, protein kinases [Meier and Klein, 1988], and protein kinase
substrates that first must be identified before their roles in sensory transduc-
tion can be elucidated. Likewise, second messenger— and ligand-activated con-
ductances of receptor neurons are being sorted out prior to understanding where
they fit into sensory transduction.

Another challenge for the future will be to untangle the relationships of the
messengers in these overlapping and interacting pathways using pharmaco-
logical agents and, when possible, mutants. A catchword for future transduc-
tion studies is *‘cross-talk,”’ and it is just this cross-talk between pathways
and interactions between the internal messengers that allows chemosensory
cells such a rich repertoire of responses and makes chemosensory transduc-
tion so complex in its control.
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VI. NOTE ADDED IN PROOF

This chapter is like a snapshot of the field of chemical sensing, but the
subject is moving rapidly and the picture is necessarily blurry. Since the writ-
ing of this chapter, more components of vertebrate olfactory transduction path-
ways can be studied at the gene level with the cloning of an olfactory specific
adenylate cyclase [Bakalyar and Reed, 1990] and nucleotide gated channels
{Ludwig et al., 1990; Dhallan et al., 1990). These genes, along with those for
a G protein (Gy) [Jones and Reed, 1989] and degradative enzymes [Lazard et
al., 1990, 1991; Ding et al., 1991] specific to olfactory epithelium almost
complete the picture of major sensory transduction components. The receptor
proteins have remained elusive, but now some of a family of genes may have
been cloned [Buck and Axel, 1991; Nef and Dionne, personal communication).
These genes appear to comprise a large branch of the superfamily of thodopsin-
like proteins and await functional assays to verify their identity. The oocyte
systems that have been patiently developed [Getchell et al., 1990] can serve
as an important technique for screening genes and providing functional assays
of odorant responsiveness of gene products. While the olfactory binding pro-
tein or its counterpart are being identified and cloned in more species [Krieger
etal., 1991; Vandenberg and Zeilgelberger, 1991; Vogt et al., 1990a), its func-
tions sull are not agreed upon {see Vogt et al., 1990b, for dnscusswn]

Olfactory cells in culture from venebrates, insects, and lobsters are a wel-
come development that will greatly facilitate the biochemical approaches to
second messengers [Ronnett et al., 1990; Zufall et al., 1991; Fadool et al.,
1991). For example, while it was established that the lobster olfactory recep-
tor cells do not utilize the cAMP transduction system for excitatory amino
acids [McClintock et al., 1989}, patch clamping of the cultured cells made it
possible to identify IP; as the second messenger [Fadool et al., 1991]. Simi-
larly, the second messengers for the inhibitory stimuli that activate K conduc-
tances [Michel et al., 1991] can now be deciphered.

On other fronts, the purification and cloning of the olfactory IP; gated
calcium channel is in progress [Kalinoski, Restrepo, and Teeter, personal
communication] and the electrophysiology of the olfactory receptor cells con-
tinues to develop [Firestein et al., 1990; Kleene and Gesteland, 1990; Lowe
and Gold, 1990; O’Connell et al., 1990; Kaissling et al., 1991]. Addition-
ally, the temporal nature of the stimulus at the receptor cells is being described
in unprecedented detail [Moore et al., 1989).

Perhaps the greatest advances in olfacnon have come from improved tech-
nology. Whole cell patch clamping, rapid kinetic systems [Breer and Boekhoff,
1991] for the analysis of second messengers, and molecular genetics (polym-
erase chain reaction, in particular) have greatly clarified the roles of second
messengers and advanced the identification of the elusive receptors. As tech-
niques continue to evolve, the molecular genetic approach that began with
olfactory marker protein [Danciger et al., 1989] will accelerate. The ability to
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measure second messengers on millisecond time scales has helped to sort out
fast and slow responses to stimuli and, hence, potential for participation in
transduction or slower processes like adaptation. From the second messenger
biochemistry, it appears that *‘diversity’” will be the operative word as it is in
taste systems and that there will be multiple, cross-talking transduction path-
ways to unravel.

Taste cells, likewise, are yielding new information, particularly through volt-
age and patch clamping [Sugimoto and Teeter, 1990; Bigiani and Roper, 1991;
among others] and cytochemistry [Dockstader et al., 1991; Oakley etal., 1990;
Finger and Bottjer, 1990; among others]. Even questions of integration at
the periphery can now be approached [Ewald and Roper, 1990]. Kinnamon
[1988] brought the diversity of taste transduction mechanisms to our attention
and the diverse second messenger systems involved in sweet and bitter taste
can now be pursued through a combinatin of electrophysiology [Cummings et
al., 1991; Avenet et al., 1991; Behe et al., 1990; Herness, 1990] and fast
kinetic biochemistry. The catfish taste system is providing a set of contrasting
mechanisms of taste transduction including ligand gated channels with valuable
behavioral correlates [Kohbara et al., 1990; Kumazawa et al., 1990].

On the unicellular side, the yeast story continues to evolve [Jackson and
Hartwell, 1990; Stone and Reed, 1990; Cartwright and Tipper, 1991}, and the
members of the receptor guanylate cyclase and Dictyostelium cAMP receptor
family continue to grow in number [Schulz et al., 1990; Saxe et al., 1991].
Along with the receptors, the other components of Dictyostelium pathway are
being teased apart [Tao and Klein, 1990a,b]. The cloning of leukocyte recep-
tors has provided a major advance that will provide sequences, derived pro-
tein structures, and an opportunity for producing and systematically altering
the proteins [Thomas et al., 1990; Murphy et al., 1990; Coats and Navarro,
1990; Gerard and Gerard, 1991]. The ciliates, similarly, are amenable to the
cloning of component parts of their transduction pathways, and such cloning
offers now hope to sort out the mechanisms of mating type recognition among
other processes [Meyer et al., 1991; Anderson et al., 1990; Ortenzi et al.,
1990]. Progress continues in the bacterial systems, particularly in the non-
methylating chemoresponse pathways {Armitage et al., 1990} and B. subtilis
[Zuberi et al., 1991]. For the bacteria, as for several of the other unicellular
eukaryotic systems, the reader is directed to the volume by Armitage and Lackie
[1990] for overviews.

The field of chemical sensing as a whole is experiencing a time of rapid
advances and longstanding questions about peripheral and central systems should
be resolved. The scope of this chapter is limited to transduction pathways of
peripheral receptor cells and unicellular organisms and, even with this limita-
tion, the chapter cannot touch upon structural, developmental, and coding
aspects of olfactory and gustatory receptor cells, for example [see Farbman,
1990; Hill and Mistretta, 1990; Scott and Giza, 1990]. Therefore, ¢(with apol-
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ogies for the necessary oversights) for more of an update on olfaction and
Dictyostelium and to discover some of the excitement surrounding the recent
developments in chemical sensing, the reader should consult Lewis [1991],
Taylor [1991], and Lancet [1991]. :
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