Evaluating Cover Crops' Ability to **Reduce Phosphorus** Runoff through Meta-**Analysis**

Richard Moyer & Laura Albino Díaz March 2017

Clover cover crop - Dave Robison

Introduction

Toxic Algae in Missisquoi Bay - Seven Days

Cover Crops

- 1. Enhance soil structure
- 2. Increase soil organic matter
- 3. Improve pest management
- 4. Improve environmental quality

Cover crops - Elaine Sears

Research Question & Purpose

What is the efficacy of cover crops to reduce phosphorus loss from agricultural soil?

Important because...

- P is limiting factor for some watersheds EG.
 Lake Champlain
- Eutrophication is a growing problem
- Limited resources exist to combat it

Agricultural runoff - Pennsylvania State University

Methods

- 1. Conduct literature review
- 2. Record relevant study data points
- 3. Apply statistical analysis
- 4. Calculate P reduction efficacy

Efficacies varied greatly

Study	Measurement Method	P Type	E (%)
Tiecher et al. 2012	Soil	TP & SMBP	7.30%
Jiao et al. 2011	Runoff	TP, TDP, PP	63.22%
Kovar et al. 2011	Soil	TP & DRP	43.32%
Kleinman et al. 2005	Soil	DRP	30.24%
Puustinen et al. 2007	Soil	PP & DP	-3.98%
Ulén 1997	Runoff	TP	-157.02%
Gómez et al. 2009	Runoff	DP	-113.37%
Bechmann et al. 2005	Soil	TP & DRP	36.45%
Villamil et al. 2006	Soil	AP	-12.82%

Runoff Results

Study	Mean	[95%	CI]	N	
Klausner et al. 1974	60.50	[-94.82,	215.82]	2	
Zhu et al. 1989	37.40	[-119.36,	194.16]	3	-
Sharpley & Smith 1991	74.85	[-79.75,	229.45]	2	
Liu et al. 2012	-0.79	[-159.15,	157.56]	3	
Jiao et al. 2011	63.22	[-90.78,	217.22]	9	-
Ulén 1997	-157.03	[-467.90,	153.85]	10	-
Gómez et al. 2009	-113.37	[-453.08,	226.35]	4	
Ryder & Flares 2008	-102.29	[-288.17,	83.59]	3	-
Locke et al. 2015	20.69	[-133.83,	175.21]	2	-
Summary	17.22	[-40.92,	75.36]	9	
					-200 0 200
					P Removal Efficacy %

Soil Results

Discussion

- Effect sizes indicate that cover crops may reduce P loss
- However, results are not statistically significant
- Extreme weather events or increased rainfall may have affected studies in which P loss increased
- Soil may reach P saturation after many seasons
- Total P loss does not necessarily indicate increased eutrophication potential
 - Cover crops may reduce algae by utilizing bioavailable inorganic P

Acknowledgements

Many thanks to...

- 1. Dr. Yushiou Tsai
- 2. Q3 Mentors
- 3. Q3 Interns

Funding for this research is provided by NSF grant **EPS-1101317.**

Literature Cited

Borenstein, M., Hedges, L.V., Higgins, J.P., & Rothstein, H.R. (2010). A basic introduction to fixed-effect and random-effects models for meta-analysis. Wiley Online Library, 97-111.

Kaspar, T.C., Kladivko, E.J., Singer, J.W., Morse, S., & Mutch, D. (2006, August 25). Potential and limitations of cover crops, living mulches, and perennials to reduce nutrient losses to water sources from agricultural fields. *Environmental Protection Agency*. Retrieved July 22, 2016, from https://www.epa.gov/sites/production/files/2015-07/documents/2006_8_25_msbasin_10covercrops.pdf.

Natural Resource Conservation Service (NRCS). (2010 September). Cover Crop Conservation Practice Standard. Retrieved July 22, 2016 from http://www.nrcs.usda.gov/Internet/FSE_DOCUMENTS/nrcs143_025656.pdf North Carolina Forest Service. What are BMPs? (2014, May 13). Retrieved July 21, 2016, from http://www.ncforestservice.gov/water_quality/what_are_bmps.htm.

Schechter, S. P., Canfield, T. J., & Dayer, P. M. (2013). A Meta-Analysis of Phosphorus Attenuation in Best Management Practices (BMP) and Low Impact Development (LID) Practices in Urban and Agricultural Areas. Ada: United States Environmental Protection Agency

Sharma, S., Gray, D., Read, J., O'Reilly, C., Schneider, P., Qudrat, A., ... Hook, S. (2015). A global database of lake surface temperatures collected by in situ and satellite methods from 1985–2009. Scientific Data, 2, 150008–150008. Sustainable Agriculture Research & Education (SARE). Cover Crops. (2012). Retrieved July 21, 2016, from http://www.sare.org/Learning-Center/Topic-Rooms/Cover-Crops.