COMPARING THE OVERALL WIDTH AND WATER QUALITY OF THE RIPARIAN HABITAT BETWEEN SITES

Ortiz-Hernandez, Greisha¹; Garcia, Angel ²
¹ Deparmento de Ciencias y Tecnologis, Universidad Metropolitana, San Juan, P.R., ² Geology Department, University of Vermont, Burlington, VT.

ABSTRACT

The streams are natural freshwater environments deposits of nutrients for many organisms. Natural environments like streams can be affected by numerous factors, as an example excessive use of soil and fertilizers. Streams can recover itself by natural remediation, such the use of vegetation like buffers in the riparian zone. The riparian zone is transitional areas between water bodies and upland communities (Decamps et. al, 2009). For this research we utilize the database of EPSCoR Streams Project, which is located in Vermont, to know a relationship between the riparian zone width and some characteristics of the TSS and TP that are in the water column. The objective is to determine if there is an association between riparian zone and water quality. The research will be using EPSCoR Streams Project database. The data used comprehended from 2008-2011 which is part of the undergraduate summer research internship. The vegetation types tell us how much TSS and TP can be removed from the wetlands riparian habitat between sites, and see if there is a difference in the TSS and TP.

METHODS

• The data of all sites in VT EPSCoR Streams Project were used. (Figure 1), And the distribution by year of the data included 2009-2011. (Figure 2).
• The data for 2009 was used to compared the banks, and the data of 2011 do not appeared because there are no sufficient data for the measured of the riparian habitat.

RESULTS

Figure 4. Left Bank relationship. The width of the riparian zone and the quantity of TSS, y= -0.4172x + 89.367, negative relationship.

In the Figures 4 and 5 we can see the relationship between the left and right bank with the quantity of TSS. Is notable that both regression models for the left and right bank has a positive slope. In Figures 4 and 5 the riparian zone width increase in response to the increase in TSS. Is more notable the increasing in the left bank.

• The differences between the banks can be noticed in the quantity of sediments. The left bank has more TSS in comparison with the right bank, because the right bank tends to be more higher than the left bank. It cause more TSS in the left bank. In streams has been observed large reductions in the nitrate, suspended solids, and phosphorus concentrations as water flows through riparian zones (Likens et. al, 1977).

• The TSS is proportional with the width of the riparian zone in both banks, and the data of 2009 was used to compared the banks, and the data of 2011 do not appeared because there are no sufficient data for the measured of the riparian habitat.

• The width of the riparian zone has the highest levels of TSS in the right and left bank. At the same time the lowest levels of TP in both banks.

• The data of Streams Project reflects that the largest riparian zone has the highest levels of TSS in the right and left bank. The vegetation types tell us how much TSS and TP can be removed from the wetlands riparian habitat between sites, and see if there is a difference in the TSS and TP.

• The TSS is proportional with the width of the riparian zone in both banks, but the concentrations of TP are inverse to the width of riparian zone.

• The data of 2009 was used to compared the banks, and the data of 2011 do not appeared because there are no sufficient data for the measured of the riparian habitat.

• The data of all sites in VT EPSCoR Streams Project were used. (Figure 1), The distribution by year of the data included 2009-2011. (Figure 2).
• The TSS and TP of each site in Site Assessment of the Data Base. A simple linear regression analysis was used.

• The data of all sites in VT EPSCoR Streams Project were used. (Figure 1), The distribution by year of the data included 2009-2011. (Figure 2).

• Riparian zones are transitional areas between water bodies, like streams, and edges of upland communities.

• The specific function of the riparian zone in streams is to provide a habitat for diverse organism, separation between human activities and streams, and removal of sediment, nutrient and pollutants from uplands runoff (Mankin et. al, 2007).

• The objectives with this project is to compare the overall width and quality of the riparian habitat between sites, and see if there is a difference in the TSS and TP concentrations between sites with different riparian habitats.

• A large riparian zone width can determine the levels of TSS and TP that arrive in the stream.

• The data of Streams Project reflects that the largest riparian zone has the highest levels of TSS in the right and left bank. At the same time the lowest levels of TP in both banks.

• The relationship between the width of the riparian zone and quantities of TSS and TP are logical because the highest concentration of vegetation can absorb more TP and TSS.

• The TSS is proportional with the width of the riparian zone in both banks, but the concentrations of TP are inverse to the width of riparian zone.

• The data of 2009 was used to compared the banks, and the data of 2011 do not appeared because there are no sufficient data for the measured of the riparian habitat.

ACKNOWLEDGMENTS

I would like to thanks the VT EPSCoR Streams Project for providing me this incredible experience. A big thanks goes to the Sciences and Technology Department of Universidad Metropolitana for help me in the project of get in the internship. Also I wanted to thanks my mentor and the staff of University of Vermont for guides me in the process. I would also like to thank my lab mates for such a fun and productive summer. A specially thanks to the NSF for provide the project funding.

REFERENCES