Predicting Sediment Regimes to Inform Prioritization of River Restoration

Doug Denu June 12th 2018

Goals

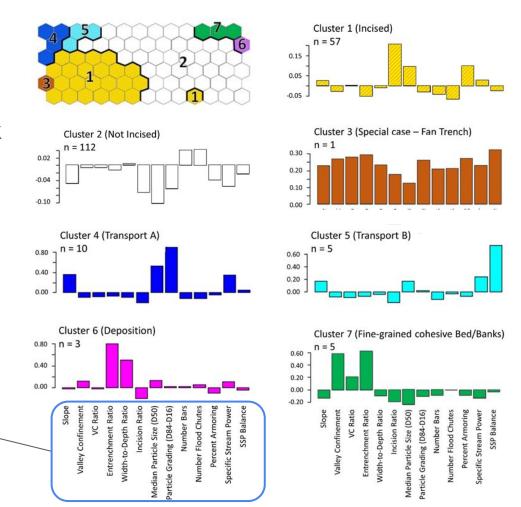
Develop a tool that:

- Estimates sediment transport regimes along river corridor reaches, statewide
- Uses data-driven approaches
- Identifies reaches for restoration given objectives
- Provides spatial visualization of results with dynamic updating

Sediment Transport Regimes

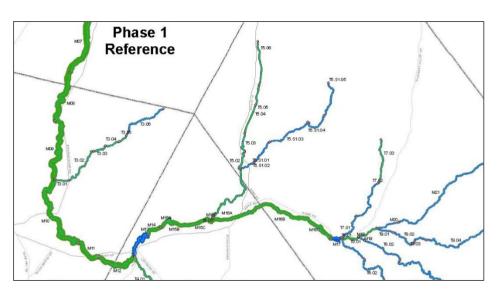
 Most interested in identifying regimes, where restoration / conservation could most effectively support a return to the natural regime

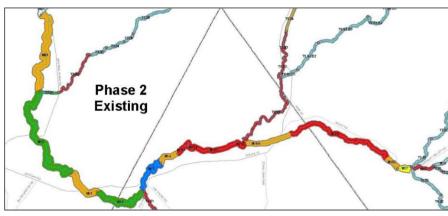
Valley Confinement	Sediment Transport Regime	Slope	Valley Confinement Ratio	Incision Ratio	Entrenchment Ratio	Width/Depth Ratio
Confined Partly Confined	Transport	≥ 2 %	< 6	< 1.3		< 12 (A, G)
	Confined Source &				< 1.4 (< 2.2) > 2.2	> 12 (F, B)
	Transport		≥ 1	> 1.3		(1, 1)
Unconfined	Unconfined Source & Transport	< 4 %	≥ 4			< 30 < 12 (E)
	Fine Source & Transport and Coarse Deposition	< 2 % > 1 %				> 30 (B, C) > 12 (E)
	Coarse Equilibrium & Fine Deposition			< 1.3		> 40 (D) < 30 (C) < 12 (E)
	Deposition		≥6	1.0		> 30 > 40


Kline, M. 2010. Vermont ANR River Corridor Planning Guide: to Identify and Develop River Corridor Protection and Restoration Projects, 2nd edition. Vermont Agency of Natural Resources. Waterbury, Vermont.

Self Organizing Map

- Type of Artificial Neural Network
- Unsupervised learning
- Reduces dimensionality to 2D
- Used to cluster or to classify


Data Inputs (13):


- Slope
- Valley Confinement
- Width-to-Depth Ratio
- Incision Ratio
- etc...

Underwood, et al, 2018 (in preparation)

SOM Regime Prediction

Kline, M. 2010. Vermont ANR River Corridor Planning Guide: to Identify and Develop River Corridor Protection and Restoration Projects, 2nd edition. Vermont Agency of Natural Resources. Waterbury, Vermont.

Optimizing Locations with Ecosystem Services

Objectives:

- 1. Cost
- 2. Regime Type
- 3. Upstream of community
- 4. Proximity to other restored reaches
- 5. Land Use: Agriculture (Corn, pasture, hay)
- 6. Public access (recreation)
- 7. etc...

Thanks!

