BREE IAM Simulations:

Phosphorus load estimates

The sensitivity of cyanobacteria blooms to changes in climate variability

> by Jory Hecht Postdoctoral Associate Vermont EPSCoR All Hands Meeting June 12, 2018

Overview of IAM research progress

- Paper 1: Comparing discharge-based estimates of phosphorus concentrations and loads entering Missisquoi Bay
- Paper 2: Sensitivity of cyanobacteria blooms to changes in climate variability
- Paper 3: Weather whiplash and water quality: How might changes in the sequences of extreme events affect cyanobacteria blooms?

Estimating river phosphorus loads: preliminary results

- Estimating daily average TP, PP, DP concentrations based on daily mean discharge
- Starting in Missisquoi basin, expanding to Pike and Rock
- Comparing three methods:
 - Quadratic regression
 - Segmented regression
 - Weighted Regression on Time, Discharge, Season
- Will method choice affect lake water quality model results?
- How do land-use change and BMPs affect this relationship?

Goodness-of-Fit of TP Concentrations -Missisquoi River, 1990-2015 _og-Space Nash-Sutcliffe Efficiency 0 0.0 0.5 4 0.3 2 ö 5 0.0 Quadratic Segmented WRTDS Regression Rearession Mean Annual TP Load Estimates -Missisquoi River, 1990-2015 1400 Mean Annual TP Load (tonnes/yr) 1000 80 200 0 Quadratic Segmented

Regression

WRTDS

Regression

Reproducing daily phosphorus load variability

- Regression-based P concentration estimates tend to regress to the mean
- Underestimates highest P concentrations entering the lake!
- Simulated variance needs to match observed variance
- How much might this matter?
 - More if blooms driven by sub-annual variability
 - Less if blooms driven by inter-annual variability

How should we model these residuals?

Observations greater than model

Observations less than model

How will changes in climate variability affect blooms?

- Changes in variability strongly influence extreme precipitation and temperature events
- Few lake water quality studies have examined impacts of future changes in daily variability
- How might these changes alter water quality?
 - Baseline period: 1987-2016
 - Future period: 2035-2064
- For each month, compare distributions:
 - Wet-day precipitation
 - Daily average air temperature
- Adjust time series based on distribution changes in statistically downscaled climate scenarios

Why are impacts of changing climate variability on blooms unclear?

INCREASE IN TEMPERATURE VARIABILITY

More internal loading

Less internal loading

What changes in climate are we examining?

WET-DAY PRECIPITATION

DAILY AVG. TEMPERATURE

WIND SPEED AND DIRECTION

$\left \sigma_T \right $	+1 C			
d. temp. (2	0 C			
	-1 C			
Δ s.		0 C	+2 C	+4 C
	Δ mean temperature ($\Delta \mu_T$)			

Х

S1: Weather Estimator changes winds based on changes in precipitation and temperature

S2: Winds from baseline period left unchanged

10 SCENARIOS

9 SCENARIOS

Х

2 SCENARIOS

180 IAM RUNS

Examining water quality responses to changes in climate variability

- Will examine changes in both central tendency and variability
- Climate scenarios inform range of mean and variance perturbations selected
- Determining stakeholder-relevant changes in:
 - Total phosphorus concentrations
 - Chlorophyll a concentrations
- Can determine worst-case cyanobacteria concentrations from chlorophyll *a* measurements
- Many intervening variables mediate impacts of precipitation and temperature on blooms

How might changes in *sequences* of extremes affect blooms?

- Weather whiplash:
 - Dry year followed by wet year
 - Wet year followed by dry year
- Has been linked to blooms, but not studied extensively
- Drought after deluge common in Lake Champlain basin
- What if weather whiplash worsens in the future?

Internal loading

Thank you!

Questions?

Email: Jory.Hecht@uvm.edu

Biogeochemical vs. hydrologic drivers of phosphorus loads

Seasonal comparison: Preliminary results

-200

Jan

Feb

Mar

Apr

Mav

- Seasonal timing of P loads important for modeling blooms
- Loads overestimated in April
- How much can WRTDS reduce monthly biases? At what expense?
- Some high P concentrations underestimated in bloom season

Month

Aug Sep Oct Nov Dec

Jun

Missisquoi TP monthly residuals -

Nash-Sutcliffe Efficiency

$$E = 1 - \frac{\sum_{t=1}^{T} (C_{t,m} - C_{t,o})^2}{\sum_{t=1}^{T} (C_{t,o} - \overline{C_{t,o}})^2}$$

- $E = 1 \rightarrow$ best possible value
- $E > 0.5 \rightarrow$ often considered satisfactory for daily values
- $E = 0 \rightarrow$ as good as using the mean
- $E < 0 \rightarrow$ worse than using the mean

Changes in wet-day precipitation

Changes in daily average temperature

Spatially Averaged Change in Daily Average Temperature (Mean and SD by Scenario)

Changes in August daily average temperature

How might changing climate variability affect blooms?

Zia et) al. (2016

HYPOTHETICAL RESULTS

Choosing water quality indicators for IAM results: Feedback needed!

- IAM models total phosphorus (TP) and chlorophyll a
- Which indicators are most important for policy? For example:
 - Days above TMDL threshold?
 - Peak chlorophyll *a* concentrations?
 - Days above recreational and drinking water thresholds?
- WHO provisional recreational guidelines:
 - Short-term impacts (> 20,000 cells/mL ~ 10 μg/L)
 - Long-term impacts (> 100,000 cells/mL ~ 50 μg/L)
- Drinking water guidelines:
 - In US < 1.6 μ g/L for adults, 0.3 μ g/L for children
 - In Canada, < 1.5 μ g/L for adults

www.lapresse.ca

