

Thrust 1: Goal 1.1a Model stormwater infrastructure

BREE Ecological Research

Extreme Events: Daily P loads from tributaries, 2011

Water Quality Resilience

The ability of a soil, river, or lake to maintain or recover similar water quality as prior to the event.

Extreme Events: Daily P loads from tributaries, 2011

Missisquoi River Riparian Area

Otter Creek Riparian Area

Urban watersheds: Stormwater

Focus on Extreme Events and Resilience –

What makes some waters, watershed soils and streams resilient?

What are the properties and processes critical to maintaining water quality resilience?

Tropical Storm Irene, Aug. 27, 2011 (Gordon Miller)

Thrust 1: Ecological Research

Goal 1.1: Determine and model properties & processes critical to maintaining water quality

- Objective 1.1a: Enhance the hydrology model to include representation of urban stormwater infrastructure
- Objective 1.1b: Develop Biome-BGC model for Rhessys in Missisquoi

Goal 1.2: Develop new lake model for projecting impacts of climate change & extreme events on water quaility

• Objective 1.2: Develop and calibrate Lake Model

Resilience to Extreme Events Across Soil-River-Lake Continuum

Resilience to Extreme Events Across Soil-River-Lake Continuum

Cutting edge sensor network

High frequency essential for capturing episodic events

Hydrology & Stormwater

Thrust 1: Obj. 1.1a Model stormwater infrastructure

Major Features of the BREE Integrated Assessment Model

AZ [15]3 For structural uncertainties, it will be useful to engage stakeholders in a discussion, or even have them do an exercise. Asim Zia, 5/22/2017

Goal: Determine and model properties & processes critical to maintaining water quality

- River, riparian and lake sensor network
- <u>Sensor and grab sample data (2017-present)</u>
- <u>Added P cycling to watershed model (Biome-BGC in RHESSys)</u>
- Develop new lake models for Missisquoi and St. Albans
 Bays

Major Features of the BREE Integrated Assessment Model

AZ [15]4 For structural uncertainties, it will be useful to engage stakeholders in a discussion, or even have them do an exercise. Asim Zia, 5/22/2017

Watershed

Thrust 1: Obj. 1.1b: Model watershed to lake nutrient flows

Major Features of the BREE Integrated Assessment Model

AZ [15]5 For structural uncertainties, it will be useful to engage stakeholders in a discussion, or even have them do an exercise. Asim Zia, 5/22/2017

Yr 1-2 Missisquoi watershed site installations (2016-17)

Riparian zones as water "filters"

Riparian zones as water "filters"

Schultz et al. 2004

Not so clear cut: dissolved O_2 is variable

Yr 1-2 Missisquoi river sensors

- Flow
- Sensor data:
 - DOC, POC, fDOM
 - NO₃, turbidity (Phosphorus)
 - Temperature, DO, pH, conductivity
- ISCO: nutrients and sediment
 - Targeted Water 'Grab' Sampling

Thrust 1: Obj. 1.1b: Model watershed to lake nutrient flows

What controls water quality resiliency in the Missisquoi watershed?

What controls water quality resiliency in the Missisquoi watershed?

0.6-

0.7-

Discharge 0.6 - 0.5 - 0.

0.3

May 11 12:00

What controls water quality resiliency in the Missisquoi watershed?

Same location Different dynamics

In watersheds, what

- Conditions
- Properties
- Human activities account for these

differences?

Event-scale NO₃ fluxes

- Largest single event contribution to annual loads occurred during ROS event
- Combined spring events: 55% of measured annual loads
 - ROS: 22% of measured annual loads
 - Spring melt/precip: 31% of measured annual loads

Year 1-2 modeling: P incorporation

Major Features of the BREE Integrated Assessment Model

AZ [15]1 For structural uncertainties, it will be useful to engage stakeholders in a discussion, or even have them do an exercise. Asim Zia, 5/22/2017

Land use impacts P loads more than climate

Lake

Thrust 1: Goal 1.2: Develop lake model

Major Features of the BREE Integrated Assessment Model

AZ [15]1 For structural uncertainties, it will be useful to engage stakeholders in a discussion, or even have them do an exercise. Asim Zia, 5/22/2017

Lake Research Objectives Thrust 1.2 Develop Lake Model

- Model is developed and calibrated with sensor data
 - Monitoring network deployed and maintained
 - Event water quality sampling
- Lake model selected, structure developed, calibration ongoing

Lake Champlain Monitoring Sites Missisquoi Bay Mississquoi R. Jewett Br. VT DEC Sites Land Use Stevens Br EPSCOR High Frequency Sites CLASS Lake Champlain Depth (ft) Wetland St. Albans Bay Value Water 0 Urban-Open 200 400 Urban Forest St. Albans Bay Basin Brush 8 Mile Missisquoi Bay Basin Barren e Champlain Basir Agricultu

Shallow eutrophic systems that differ in terrestrial and open water connectivity What processes drive water quality response to events?

Year 1-2 Deployment of Saint Albans and Missisquo Bay Advanced Biogeochemical and Hydrodynamic Observatory

Thrust 1: Goal 1.2 Develop Lake Model

Sensors Measure-ChIA/PC, T, Cond, pH, DO, FDOM, Turbidity every hr. at 0.5 meter depth intervals at 3 Sites

Year 1-2 Saint Albans Hydrodynamic

Monitoring Array

Sensors reveal 2017 blooms were late and had different timing

Satellite mostly confirms 2017 differences, provides spatial context

New collaboration with NOAA, early warning system proposal development

10/15

2018 bloom earlier than 2017 and similar timing between bays

Satellite mostly confirms 2018 similarities, different peaks for MB

*Composite images of weekly maximum values for each pixel

Lake Modeler Hired, Model Selected and Under Development

Thrust 1: Ecological Systems Objective 1.2a: Develop lake model

Lake Model (AEM3D; ELCOM-CAEDYM) 3D coupled Hydrodynamic-Aquatic Ecosystem Model

Processes Simulated

Hydrodynamics: Motions of the water body and the transport and mixing of all simulated constituents due to these motions.

Biogeochemical processes: Primary and secondary production, nutrient and metal cycling and sediment interactions.

Ongoing Lake Modeling: Climate Change, Response to Events, Watershed Management

Thrust 1: Goal 1.2: Model lake