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Water Quality Resilience

The ability of a sail, river, or lake to maintain or recover
similar water quality as prior to the event.
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Missisquol River Riparian Area




Otter Creek Riparian Area




Urban watersheds: Stormwater




Basin Resilience to
Extreme Events

in the Lake Champlain Basin

Focus on Extreme Events
and Resilience —

What makes some waters,
watershed soils and streams
resilient?

What are the properties and
processes critical to maintaining
water quality resilience?

Tropical Storm Irene, Aug. 27, 2011
(Gordon Miller)




Thrust 1: Ecological Research

Goal 1.1: Determine and model properties & processes critical
to maintaining water quality

* Objective 1.1a: Enhance the hydrology model to include
representation of urban stormwater infrastructure

* Objective 1.1b: Develop Biome-BGC model for Rhessys in
Missisquoi

Goal 1.2: Develop new lake model for projecting impacts of
climate change & extreme events on water quaility

* Objective 1.2: Develop and calibrate Lake Model



Ecological Research (2 g

Resilience to Extreme Events Across Soil-River-Lake Continuum

Cutting edge
sensor network
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Resilience to Extreme Events Across Soil-River-Lake Continuum

Cutting edge
sensor network
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High frequency essential for capturing episodic events
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Hydrology & Stormwater

Thrust 1:

Oby. 1.1a Model
stormwater
infrastructure
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AZ [15]3 For structural uncertainties, it will be useful to engage stakeholders in a discussion, or even have them do an exercise.
Asim Zia, 5/22/2017



Ecological Research

Goal: Determine and model properties & processes critical to
maintaining water quality

e River, riparian and lake sensor network

 Sensor and grab sample data (2017-present)

e Added P cycling to watershed model (Biome-BGC in
RHESSys)

e Develop new lake models for Missisquoi and St. Albans
Bays
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Basin Resilience to

Extreme Events
in the Lake Champlain Basin

atershed

Thrust 1:

Oby. 1.1b: Model
watershed to lake
nutrient flows
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AZ [15]5 For structural uncertainties, it will be useful to engage stakeholders in a discussion, or even have them do an exercise.
Asim Zia, 5/22/2017
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Yr 1-2 Missisquoi watershed % BREE

site installations (2016-17) T

in the Lake Champlain Basin

Model watershed to

lake nutrient ﬂo-ws




Yr 1-2 Missisquoi watershed f‘% BREE

Extreme Events
in the Lake Champlain Basin
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Riparian zones as water “filters”
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Riparian zones as water “filters”
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Not so clear cut:
dissolved O, is variable
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 Flow

* Sensor data:
* DOC, POC, fDOM
* NO,, turbidity (Phosphorus)
 Temperature, DO, pH, conductivity

* ISCO: nutrients and sediment '
» Targeted Water ‘Grab’ Sampling ;

Thrust 1:

Oby. 1.1b: Model
watershed to lake
nutrient flows
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What controls water quality resiliency in
the Missisquoi watershed?
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What controls water quality resiliency in
the Missisquoi watershed?

Distant sources, lower connectivity

25- /\ End of storm, low flows = high nitrate
) . 20- /

1.5- /.\——/ %
E
1.0- ‘ | S
0.5- =g \
E \ Peak flow with low nitrate
o 04- =
g = . . . . \
S 03- 1.0~ =
go.zr e etcooonae 0 0 O '.....
L} L ' 1 7 '
0.1 St Klginning =% 7 03 04 05
Jul 09'00:00 Jul 09'12:00 Jul 10'00:00 orm beginning = Discharge

low flows & nitrate

Nearby sources, higher connectivity

12- '\\‘\
1.0- \

£ \% 10- Beginning of storm = high nitrate
EO.B* M =Ty
- )
"‘M E
0.67 | ‘ ‘ w—— 8.0.8‘
: S oo SO0
05 ... Endof storm, low
§os flows = low nitra;e ”.....o' Peak flow = moderate
0 o4- . N.
. — / nitrate
0.3- 0.3 4 C 5 0.6 0.7

May 11 12:00 May 12 00:00 May 12 12:00 May 13 00:00 May 13 12:00 Discharge



What controls water quality resiliency in
the Missisquoi watershed?

Distant sources, lower connectivity

Same location

Different dynamics s |
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* Largest single event contribution to annual

loads occurred during ROS event
* Combined spring events: 55% of measured
annual loads
e ROS:22% of measured annual loads
 Spring melt/precip: 31% of measured
annual loads
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Year 1-2 modeling: P incorporation

surface DIP

Shallow

} Subsurface
(m, K)

~~ Water Table
~~_Bypass

Flow
(gwl)

Deep Ground Water to Stream (gw2) Thrust 1:

Goal 1.1b: Model
groundwater watershed to lake
DIP and DOP nutrient flows
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AZ [15]1 For structural uncertainties, it will be useful to engage stakeholders in a discussion, or even have them do an exercise.
Asim Zia, 5/22/2017



Land use impacts P loads more than climate
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Thrust 1:
Goal 1.2: Develop lake
model
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AZ [15]1 For structural uncertainties, it will be useful to engage stakeholders in a discussion, or even have them do an exercise.
Asim Zia, 5/22/2017



== BREE

‘ Basin Resilience to

Lake Research Objectives P
Thrust 1.2 Develop Lake Model

* Model is developed and calibrated with sensor data
 Monitoring network deployed and maintained
e Event water quality sampling

* Lake model selected, structure developed, calibration ongoing




Lake Research . BREE

Basin Resilience to

Extreme Events
in the Lake Champlain Basin
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What processes drive water quality response to events?




Basin Resilience to

Bay Advanced Biogeochemical and Hydrodynamic p g
Observatory

Year 1-2 Deployment of Saint Albans and Missisquo ’ == BREE

Met Station

Thrust 1:
Goal 1.2 Develop Lake
Model

Sensors Measure-ChlA/PC, T, Cond, pH, DO, FDOM,
Turbidity every hr. at 0.5 meter depth intervals at 3 Sites
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Sensors reveal 2017 blooms were late and had
different timing
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Satellite mostly confirms 2017
differences, provides spatial context

New collaboration with
8/06 8/13 8/20 8/27 9/03 NOAA, early warning

system proposal
development

10/0 1 10/08

*Composite images of
weekly maximum
values for each pixel




2018 bloom earlier than 2017 and
similar timing between bays
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Satellite mostly confirms 2018
similarities, different peaks for MB

7/29 8/05 8/12 8/19 8/26

9/02 9/09 9/16

*Composite images of
weekly maximum values
for each pixel




Lake Modeler Hired, Model Selected
and Under Development

Aquatic Ecosystem Model 3D (AEM3D)
Weather/climate forcing

Inflows Hydrodynamic Model (ELCOM) Outflow/Tides
—)..
Bathymetry, Transport, Mixing, Temperature, Salinity
iCoupIing

Biogeochemical Model (CAEDYM)
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Thrust 1: Ecological Systems
Obyectrve 1.2a: Develop lake model




Lake Model (AEM3D; ELCOM-CAEDYM)
3D coupled Hydrodynamic-Aquatic Ecosystem Model

Processes Simulated Shortwave
eI : Radiation

Hydrodynamics: Motions ALY

of the water body and
the transport and mixing
of all simulated

constituents due to these FEE8
motions. SR

Biogeochemical
processes: Primary and

e L

secondary production, ®. .t
nutrient and metal
cycling and sediment
interactions.
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Ongoing Lake Modeling:
Climate Change, Response to Events,
Watershed Management

Chl-a pg L™
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‘ Basin Resilience to

Extreme Events
in the Lake Champlain Basin

August Chlorophyll—a
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Thrust 1:
Goal 1.2: Model lake




