Event-scale riverine loading of nitrogen & phosphorus

Impacts of land use and seasonality on N:P export ratios

Dustin Kincaid

Erin Seybold, E. Carol Adair, William Bowden, Julia Perdrial, Matthew Vaughan, Andrew Schroth

Acknowledgements

Co-authors

Erin Seybold

E. Carol Adair

Breck Bowden

Julia Perdrial

Matthew Vaughan

Andrew Schroth

Collaborators & support

Saul Blocher

Scott Hamshaw

James Shanley

Andrew Vermilyea

Funding

The relative availability or stoichiometric ratios of N & P, can affect autotrophic biomass and production

And N:P can influence the likelihood of harmful algal blooms

Tributary inputs are important for lake chemistry

http://lcbp.org/sol18dev/wp-content/uploads/2018/06/tributary-loading.jpg

What controls riverine N and P loading patterns on the event-scale?

Can now predict N & P concurrently using in situ sensors & algorithms

We quantified N & P dynamics for >350 storm events across three LULCs from 2014-2018

Storms matter for annual loads, though slightly less so for nitrate in the urban site

Storm water yield is a good predictor of NO₃⁻ & SRP event yield

Relationships differ by land use:

AG > URBAN > FOREST

NO₃⁻ is more responsive to storm water yield than SRP

Grouping by season explains more variance in storm N & P yield

Are there differences in event NO₃⁻: SRP export ratios?

Event NO₃⁻: SRP export ratio

NO₃⁻ yield (moles N) per storm event

SRP yield (moles P) per storm event

Seasons matter

Land use matters

Spring

⊨Fall

Summer

Storm water yield is not the sole determinant of event NO_3^- : SRP export ratios – storm intensity, location, & antecedent conditions?

What's leading to all the variability in event NO₃⁻: SRP export ratios?

Characterize storm NO₃⁻ & SRP export behavior

Concentration-discharge relationships can reveal solute export behavior

NO₃ often originates from proximal sources or is mobilized earlier in the storm

More constrained; most SRP may originate from more distal sources or takes longer to mobilize from soils

Variability in event NO₃⁻:SRP export ratios driven by NO₃⁻?

Antecedent conditions important

Variability in event NO₃⁻: SRP export ratios driven by variability in nitrate export behavior?

Extreme variability in NO₃- export behavior

Does grouping by season improve the relationship between event nitrate a SRP yield and storm water yield?

Seasons don't provide much more insight

Concentration-discharge relationships can reveal solute export behavior

