# A 3D hydrodynamic-biogeochemical numerical model of Lake Champlain

## Presentation to All Hands Meeting 4 June 2019

Clelia Luisa Marti Department of Civil and Environmental Engineering The University of Vermont



### **The Numerical Model**



Hodges et al. (2000) Limnology and Oceanography, Romero et al. (2003) Ecological Modelling, Trolle et al. (2012) Hydrobiologia

## **Numerical Models - Philosophy**

- Process-based models.
- Models are under active and continuous developments, *i.e., science and run time.*
- The science in the models must be able to capture processes in the water column at the scale of interest according to the objective.
- Models must be open source so the science in the models can be peer reviewed.
- Accessing the best possible forcing data.
- Validation data must be collected in regions where signal to noise is the highest and in an adaptive way.

#### **Model Schematic of Lake Champlain**



#### Lake Champlain Model Domain





 $734 \times 146 \times 45$  cells

free surface

1 m

Source: Tom and Pat Manley, Middlebury College

## **Model Forcing Data and Initial Conditions**

| Forcing Data/Initial<br>Conditions | Data                                                                                                                  | Time Interval                             | Source                                              |
|------------------------------------|-----------------------------------------------------------------------------------------------------------------------|-------------------------------------------|-----------------------------------------------------|
| Meteorological<br>Forcing          | Air temperature,<br>Relative humidity,<br>Solar radiation, Cloud<br>cover, Wind speed and<br>direction, Precipitation | 15 min/Hourly/Daily                       | NOAA, UVM,<br>VT EPSCoR BREE,<br>GOV OF CANADA      |
| Inflow                             | Flow rate                                                                                                             | 15 min/Daily                              | USGS, MELCC<br>(QUEBEC)                             |
|                                    | Water temperature and Salinity                                                                                        | Daily/Weekly/Biweekl<br>y/Monthly         | DEC, Running<br>averages of air<br>temperature data |
| Outflow                            | Flow rate                                                                                                             | Hourly/Daily                              | GOV OF CANADA                                       |
| Initial Conditions                 | Water level                                                                                                           | 15 min                                    | USGS                                                |
|                                    | Water temperature and Salinity                                                                                        | 15 min/30 min/Hourly/<br>Biweekly/Monthly | VT EPSCoR BREE,<br>USGS, DEC                        |
|                                    | Extinction coefficient                                                                                                | Weekly/Biweekly/Mon<br>thly               | DEC                                                 |

## **Field Data Availability for Model Validation**

| Instrument                                              | Source                                             | Time Period                                  | Sampling<br>Frequency       |  |  |
|---------------------------------------------------------|----------------------------------------------------|----------------------------------------------|-----------------------------|--|--|
| A) In-situ Data Streams                                 |                                                    |                                              |                             |  |  |
| Pontoon Vertical<br>Profiling System                    | VT EPSCoR BREE                                     | Late May through<br>October                  | Hourly                      |  |  |
| Water temperature<br>Moorings and<br>Water level gauges | VT EPSCoR BREE,<br>NOAA, USGS,<br>SUNY Plattsburgh | Late May through<br>October/<br>~ Year round | 5 min/15 min/<br>30 min     |  |  |
| ADCP                                                    | VT EPSCoR BREE                                     | ~ Year round                                 | 30 min                      |  |  |
| B) Monitoring Programmes                                |                                                    |                                              |                             |  |  |
| Profiler                                                | DEC                                                | Late May through<br>October                  | Weekly/Biweekly/<br>Monthly |  |  |

### **Model Validation - Water Height**





Source: Eric Leibensperger, SUNY Plattsburgh (Water temperature moorings)



Source: VT EPSCoR BREE (Pontoon System)



Source: VT EPSCoR BREE (Pontoon System)



Source: VT EPSCoR BREE (Pontoon System)

## **Comparison of field and modeled in-lake variables**

| Variable          | Station    | RMSE    |
|-------------------|------------|---------|
| Water level       | Burlington | 0.047 m |
|                   | Richelieu  | 0.049 m |
|                   | VI         | 0.91 °C |
|                   | Ν          | 0.89 °C |
| Water temperature | С          | 0.90 °C |
| water temperature | S          | 0.68 °C |
|                   | OSAB       | 0.74 °C |
|                   | ISAB       | 0.83 °C |
|                   | MB         | 0.69 °C |

#### Similar to those reported in other 3-D modeling studies

Oveisy et al. (2014) Journal of Great Lakes Research, Marti et al. (2016) Water Resources Research, Tranmer et al. (2018) Ecological Modelling

#### Missisquoi Bay Model Domain

 $\otimes \mathbb{Z}$  cte





 $\otimes$ X= $\otimes$ Y=100 m 152 × 100

Source: Tom and Pat Manley, Middlebury College 34 cells



Source: DEC (Profiler) and VT EPSCoR BREE (Pontoon System)

#### **Model Validation - Ice cover**



Source: NASA (https://worldview.earthdata.nasa.gov/)

### Summary

- Collected, processed and analysed most of the relevant data (2017 and 2018) required for the implementation of a 3D hydrodynamic-biogeochemical model for Lake Champlain.
- Implemented and validated a 3D hydrodynamic model for Lake Champlain.
- Implemented and validated a 3D hydrodynamic model for Missisquoi Bay.
- Both models ability to simulate temporal and spatial hydrodynamics is good.

#### Summary

Work in progress ...

- Setting up a 3D hydrodynamic model for Saint Albans Bay (expected completion September 2019)
- Coupling the biogeochemical model for Missisquoi Bay (expected completion December 2019)

Thank you for your attention! Any questions?