

Modeling alternative water governance scenarios in the Lake Champlain Basin: A multi-scale agent-based model of resource prioritization and collective action

Patrick Bitterman

Postdoctoral Research Associate, Vermont EPSCoR Postdoctoral Research Fellow, Gund Institute for Environment

June 4, 2019 // All Hands Meeting 2019

Main takeaways

- The efficacy of water quality-related municipal coordination in the LCB is a function of network **structure** and **function**
- Coordination schemes that regionalize planning and implementation are more effective in reducing phosphorus loads
- Capacity at state and municipal scales is more important than the amount of funding
- Phosphorus mitigation projects must become *much* more effective

EPA approves administration's clean water funding steps

By Elizabeth Gribkoff Feb 12 2019 | one reader footnote

Senate's skepticism over clean water bill gives way to unanimous approval

By Elizabeth Gribkoff Apr 2 2019 | 4 reader footnotes

vtdigger.com

S.96

An act relating to the provision of water quality services

Sponsor(s)

Sen. Christopher Bray Sen. Virginia Lyons Sen. Rebecca Balint Sen. Robert Starr

Last Recorded Action

Senate 5/22/2019 - As passed by Senate and House https://legislature.vermont.gov/bill/status/2020/S.96

A coupled model of clean water project prioritization

Behaviors:

1. Identify clean water projects

- 1. Identify clean water projects
- 2. Plan clean water projects

Annual

Reduction

- 1. Identify clean water projects
- 2. Plan clean water projects
- **3. Apply for funding (from state)**

Reduction

Annual

- 1. Identify clean water projects
- 2. Plan clean water projects
- **3. Apply for funding (from state)**

Behaviors:

- 1. Identify clean water projects
- 2. Plan clean water projects
- 3. Apply for funding (from state)
- 4. Implement/build clean water projects

...decide to engage in coordination

How might clean water districts function (as multiplex networks)?

Simulation scenarios

Lever of change	Parameter	Values
How much money should the state spend?	Allocated funds	1, 2, 3, 4, and 5 million USD
How many human resources are necessary?	State agent capacity (throughput)	50, 75, 100, 150, and 200 projects/year
Scale and scope of coordination	Policy rules	 Municipalities act alone Voluntary planning district Mandated planning district Voluntary planning and implementation district Mandated planning and implementation district

Levers of change: regionalization policy

Planning only district

Planning & implementation district

	5e+06 -	7341	9319	10503	11846	12825	
	4e+06 -	7382	9215	10379	11794	12719	
•	3e+06 -	7314	9284	10326	11821	12623	
•	2e+06 -	7322	9178	10480	12008	12256	
•	1e+06 -	7281	9160	10445	10312	10507	
)		T	-	1			
•		50	75	100	150	200	

Levers of change: regionalization policy

Conclusions

- The efficacy of networked collaboration in the LCB is a function of network structure and function
- Water districts that regionalize planning and implementation are more effective in reducing phosphorus loads than other configurations
- Capacity at state and municipal scales is more important than the amount of funding
- Regardless of policy, phosphorus mitigation projects in Vermont must become *much* more effective

Thank you!

NSF OIA Award #1556770: Lake Champlain Basin Resilience to Extreme Events

patrick.bitterman@uvm.edu www.patrickbitterman.com

Limitations & future work

- TP loads are not the only driver of behavior
- Power, politics, and path dependencies influence prioritization (and aren't modeled)
- Ongoing relationship with Vermont DEC to better understand scope of new rules & flexibility
- More than just a scaling exercise: "serious games" with new districts to better understand how they prioritize projects
- Extending to agricultural governance

Municipal Project Coordination (Missisquoi and Winooski watersheds)

Planning only district

Planning & implementation district

year)	
(\$)	
bg	
indi	
e fl	
Stat	

	1					
	5e+06 -	7341	9319	10503	11846	12825
	4e+06 -	7382	9215	10379	11794	12719
	3e+06 -	7314	9284	10326	11821	12623
	2e+06 -	7322	9178	10480	12008	12256
-	1e+06 -	7281	9160	10445	10312	10507
)	L	50	75	100	150	200
)		00	10	100	100	200
)	1	-		6		
	5e+06 -	7834	10579	12261	15518	18367
	4e+06 -	7885	10479	12178	15338	18274
	3e+06 -	7859	10398	12396	15533	18484
	2e+06 -	7807	10390	12193	15462	16353
	1e+06 -	7762	10492	12266	12598	12608
	L	50	75	100	150	200
	State consolity (projecte/year)					

State capacity (projects/year)

Ostrom, E., 2009. Understanding institutional diversity. Princeton university press.

Ostrom, E., 2009. Understanding institutional diversity. Princeton university press.

Ostrom, E., 2009. Understanding institutional diversity. Princeton university press.

You motivate what you measure...

Urban clean water projects empirical parameter distributions

Spatial mismatch between planning and implementation capacity