Applying Deep Learning to Hydrological Events for Watershed Modeling

Scott Hamshaw, Donna Rizzo, Mandar Dewoolkar

Vermont EPSCoR | 06.04.2019

Regional climate (including extreme meteorological events) Land use Hydrology (flow, solute transport) biogeochemistry (P, N, C) Lake (hydrodynamics, water quality)

Identifying where riverine sediments originate

Watershed Modeling

SOURCE: Stryker, et al., 2018, Journal of Hydrology: Regional Studies.

Streambanks

Roads

Agricultural

Forest

Topsoils

0.00

Another approach to understanding sediment dynamics in watersheds

 Mine high-frequency water quality data

Identify "types" of hydrological events

Date

Streamflow (m³/s)

What if we let the watershed tell us what is going on?

Garnett Williams, USGS, 1989

Class I – Linear

Class II – Clockwise

Class III -Counterclockwise

Class IV – Linear then Clockwise

Class V – Figure-Eight

□ Garnett Williams, USGS, 1989

Expanded Hamshaw Classes/Patterns

Hysteresis Type Key

□ Garnett Williams, USGS, 1989

Expanded Hamshaw Classes/Patterns

Automated event classification system

Hamshaw et al. (2018). "A new machine learning approach for

classifying hysteresis in suspended sediment-discharge relationships using high- frequency monitoring data", Water Resources Research

Hamshaw & Rizzo. (2019). "Using Machine Learning to Leverage the Value of Big Data and High-Frequency Monitoring in Characterizing Watershed Sediment Dynamics" in DOE Open Watershed Science Report (Invited)

Automated event classification system

- 53% 72% Accuracy
- Need for larger storm event data set

Hamshaw et al. (2018). "A new machine learning approach for classifying hysteresis in suspended sediment-discharge relationships using high- frequency monitoring data", *Water Resources Research*

Hamshaw & Rizzo. (2019). "Using Machine Learning to Leverage the Value of Big Data and High-Frequency Monitoring in Characterizing Watershed Sediment Dynamics" in DOE Open Watershed Science Report (Invited)

Leveraging EPSCoR in-stream water quality sensors

Automated, supervised event extraction

BREE Basin Resilience to Extreme Events in the Lake Champlain Basin

Simultaneous water quality (turbidity, DOC) and streamflow event analysis

Hamshaw & Javed, 2019. Improvements to Event-based Analysis of High-Frequency Turbidity and Suspended Sediment Monitoring Data.

CUAHSI Hydroinformatics Innovation Fellowship

Expansion of event classification to state of the art deep learning algorithms

Basin Resilience Extreme Events

Classification of Hysteresis in Event Concentration-Discharge Relationships." In Proceedings of SedHyd 2019 Conference

Visual representation of hydrological event data

• Color as Time

BREE Undergrad Interns Eric Romero & Nicole Dávila

Romero, *et al.* (2018). "Automating the Classification of Hysteresis in Event Concentration-Discharge Relationships." *In AGU Fall Meeting 2018*

• Evaluation of human visual interpretation

Group

Data-driven identification of new categories of events

• Leverage temporal information in sensor signal "3-D trajectories"

Javed et al. (2019) In preparation.

Connection to LULC/BMP

- Watersheds have existing characteristic distribution of Wade Brook event types
 - Affected by changes in
 - Climate & extreme events
 - LULC & BMP adoption

Hungerford Brook

Smart detection of shifts in storm event behavior

Watershed 3: Hungerford Brook

Watershed 2: Potash Brook

Watershed 1: Wade Brook

Maps courtesy Matt Vaughan

Scaling event analysis to Solutional watersheds in the IAM

• Regionalization approach

Extreme Events

 Predict hysteresis type occurring at subwatershed outlet

Output \rightarrow Informs BMP Implementation and Adoption:

- RHESSys (e.g., alter manure application at subwatershed level)
- ABM (e.g., alter intent to adopt)