General Equilibrium Modeling

Bill Gibson

PTAC May 24 2018

Bill Gibson EPSCoR University of Vermont

< ロ > < 同 > < 回 > < 回 > .

Based on IMPLAN data

• IMPLAN data familiar to city and regional planners

・ロト ・回ト ・ヨト ・ヨト

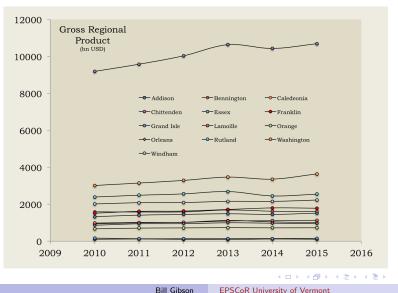
- IMPLAN data familiar to city and regional planners
- CGE can be customized to region

・ロト ・回ト ・ヨト ・ヨト

- IMPLAN data familiar to city and regional planners
- CGE can be customized to region
- Sector and structure

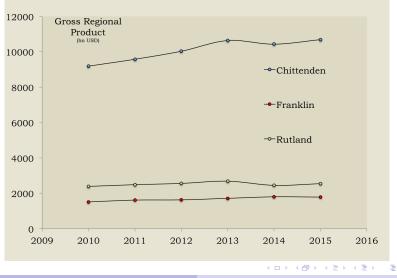
< ロ > < 同 > < 回 > < 回 > < □ > <

- IMPLAN data familiar to city and regional planners
- CGE can be customized to region
- Sector and structure
- Detailed down to zip-code


イロン 不同 とくほう イロン

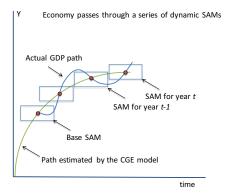
- IMPLAN data familiar to city and regional planners
- CGE can be customized to region
- Sector and structure
- Detailed down to zip-code
- Link to land use to determine Phosphorus load

イロン 不同 とくほう イロン


- IMPLAN data familiar to city and regional planners
- CGE can be customized to region
- Sector and structure
- Detailed down to zip-code
- Link to land use to determine Phosphorus load
- As a function of market incentives as well as taxes and subsidies

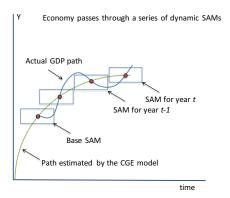
Time series county level projections possible

EPSCoR University of Vermont

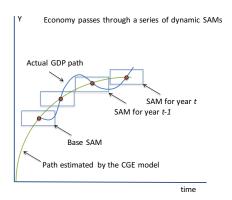

Time series county level projections possible

Bill Gibson EPSCoR University of Vermont

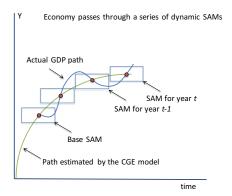
Dynamic CGEs


 Based on stock-flow consistency

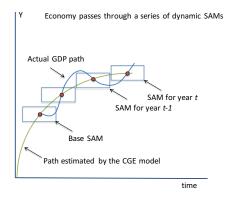
・ロン ・四 と ・ ヨ と ・ ヨ と ・


Dynamic CGEs

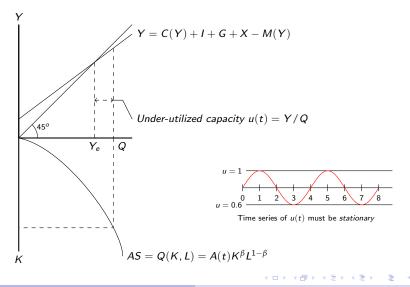
- Based on stock-flow consistency
- Updated at each sweep of the model


Dynamic CGEs

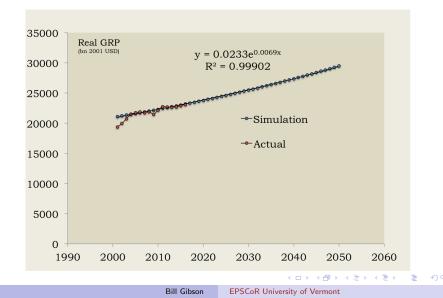
- Based on stock-flow consistency
- Updated at each sweep of the model
- Calibrated to time series


Dynamic CGEs

- Based on stock-flow consistency
- Updated at each sweep of the model
- Calibrated to time series
- Many levels of taxation


Dynamic CGEs

- Based on stock-flow consistency
- Updated at each sweep of the model
- Calibrated to time series
- Many levels of taxation
- Must account for tech change and productivity growth



< ロ > < 同 > < 回 > < 回 > .

The Model in pictures

Model tracks Real GDP

New Model

• 23 sectors aggregation of 536

ヘロト ヘ部ト ヘヨト ヘヨト

æ

New Model

- 23 sectors aggregation of 536
- Model has 9 social classes

・ロト ・回ト ・ヨト ・ヨト

æ

New Model

- 23 sectors aggregation of 536
- Model has 9 social classes
- 6 Levels of government

・ロン ・部 と ・ ヨ と ・ ヨ と …

New Model

- 23 sectors aggregation of 536
- Model has 9 social classes
- 6 Levels of government
- Many taxes and transfers

New Model

- 23 sectors aggregation of 536
- Model has 9 social classes
- 6 Levels of government
- Many taxes and transfers
- Much more comprehensive than last PTAC

New Model

- 23 sectors aggregation of 536
- Model has 9 social classes
- 6 Levels of government
- Many taxes and transfers
- Much more comprehensive than last PTAC
- Model running with 138,764 equations and 138,764 unknowns

Image: A matrix

(*) *) *) *)

• Fixed coefficients depending on practices

イロト イポト イヨト イヨト

- Fixed coefficients depending on practices
- Gross delivery-not yet connected to lake model

・ロン ・雪 と ・ ヨ と ・ ヨ と …

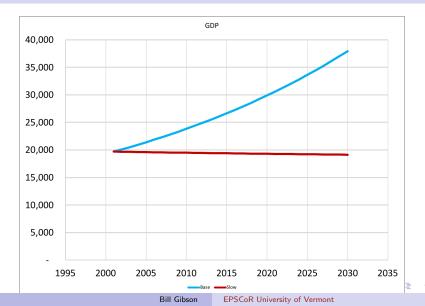
- Fixed coefficients depending on practices
- Gross delivery-not yet connected to lake model
- Responsive to change in sectoral composition

- Fixed coefficients depending on practices
- Gross delivery-not yet connected to lake model
- Responsive to change in sectoral composition
- Use same coefficients as Asim-2007

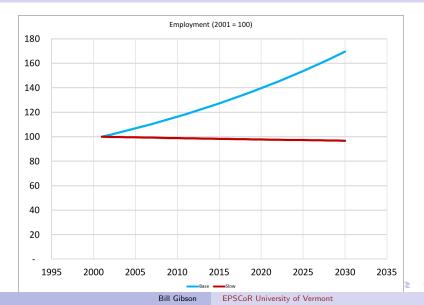
(신문) (신문)

< A >

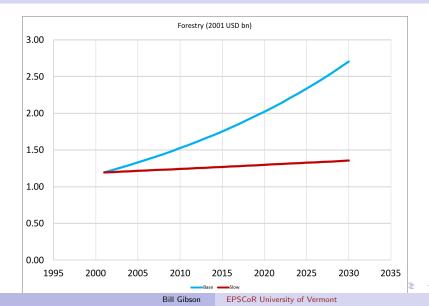
- Fixed coefficients depending on practices
- Gross delivery-not yet connected to lake model
- Responsive to change in sectoral composition
- Use same coefficients as Asim-2007
- Doesn't factor in TMDL

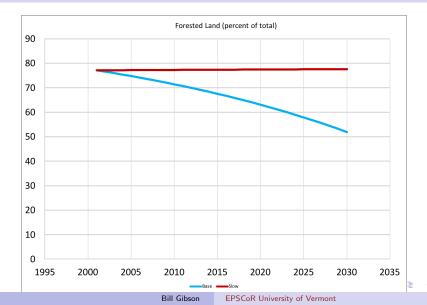

(신문) (신문)

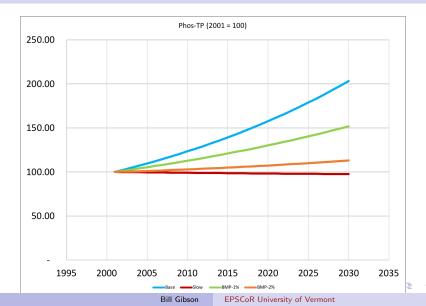
< A >


- Fixed coefficients depending on practices
- Gross delivery-not yet connected to lake model
- Responsive to change in sectoral composition
- Use same coefficients as Asim-2007
- Doesn't factor in TMDL
- Also held constant

A B M A B M


Real GDP


Employment


Forestry Real Value Added

Forestry Land Use

Phosphorus

Elasticities

Percent change in output to obtain a one-percent change in P

Macro	Sectoral value added						
GDP	-0.94	Crops	-0.99	Brewery	-0.92	Housing	-0.62
Deflator	0.16	Dairy	-1.10	Meat	-0.78	Real Est	-0.86
Total Employment	-0.78	Animal	-1.08	Wood	-0.90	Landscape	-0.96
GDP per capita	-0.93	Forestry	-0.95	Mfg	-0.92	Rec	-0.91
Real Wage	-0.16	Primary	-0.91	Wholesale	-0.91	Services	-0.89
Gini	0.01	Utilities	-0.99	Retail	-0.89	Tourism	-0.96
		Const	-0.62	Transport	-0.90	Govt	-1.12
		Milk	-1.01	Info	-0.84		

・ロト ・回ト ・ヨト ・ヨト

EPSCoR University of Vermont

э

Cost of phosphorus reduction?

• 2018-2030 lost output, employment, tax revenues

Bill Gibson

Cost of phosphorus reduction?

- 2018-2030 lost output, employment, tax revenues
- Discounted to 2018 with a discount rate of 3 percent

Image: Image:

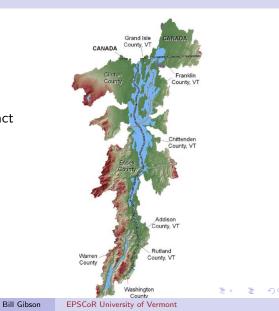
-

Cost of phosphorus reduction?

- 2018-2030 lost output, employment, tax revenues
- Discounted to 2018 with a discount rate of 3 percent
- 6 percent of 2018 GDP

-

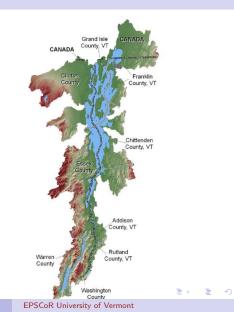
< □ > < 同 >


Cost of phosphorus reduction?

- 2018-2030 lost output, employment, tax revenues
- Discounted to 2018 with a discount rate of 3 percent
- 6 percent of 2018 GDP
- Confirms that BMP rather than output reduction is only solution practically available

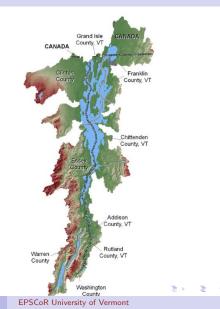
・ロン ・雪 と ・ ヨ と ・ ヨ と …

What is next?

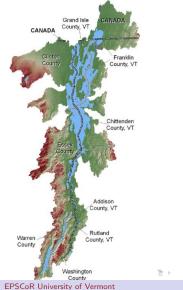

 Use watershed information to lessen total impact of growth

Bill Gibson

What is next?


- Use watershed information to lessen total impact of growth
- Extend model to New York

Bill Gibson


What is next?

- Use watershed information to lessen total impact of growth
- Extend model to New York
- Join results to ABM

What is next?

- Use watershed information to lessen total impact of growth
- Extend model to New York
- Join results to ABM
- Run for longer time horizon

Bill Gibson