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Key points from analysis of event hysteresis

 Expanded library of hysteresis patterns

Understand watershed processes

• Sediment sources

• Transport dynamics

Automated Monitoring/Classification

• Shifts in types of events

• Detect key types of events

 Untapped potential in data-mining high-frequency water quality sensor data

 Can improve constituent load estimates and guide watershed modeling



Research directions and integration into modeling

Event Analysis

 Improved TSS and 

TP Load Estimates

 Regression models

 ANN models

Watershed 
Hysteresis 

Characterization

 Inform governance 
or land use models

 Pre-condition map 
of watersheds to 
adjust project/BMP 
selection

 Inform spatial 
cognition of agents

Automated 

Classification of 

Event C-Q hysteresis

 Apply to other 

response variables

 DOC

 Nitrate

 Soil Moisture



Using Hysteresis Analysis to Characterize 

Hydrological Events



Expanding research out into new watersheds

 Range of:

 Land Use/Cover

 Geology

 Soils

 Drainage Area

 Topography
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A more varied set of watersheds
1 km2

(HUC16)

10 km2

(HUC14)

100 km2

(HUC12)

500 km2

(HUC10)

2,000 km2

(HUC8)



Clear differences in dynamics between watersheds

 Need to account for 

effects of:

 Spatial Scale

 Season

 Next steps: 

 Analyze sequence of events

 Sediment loads from types 

of hysteresis
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An Example:Two storm events to illustrate event sediment dynamics

 Connected, 
rainfall activated, 
nearby sediment 
sources 
important

 Streamflow 
activated 
(channel network) 
sediment sources 
important



Automated event classification system



Implementing Deep Learning into hydrological event analysis

 Model algorithms & architecture

 Convolutional Neural Networks 

(CNNs)

 3-D CNNs

 Autoencoders

ResNet50 Architecture

• Increase in accuracy over previous 

results

• Near 70% classified correctly 



Implementing Deep Learning into hydrological event analysis

 New Classes (pattern library)

 Clustering of encoded features

 Crowdsourcing tests

 Model algorithms & architecture

 Convolutional Neural Networks

 3-D CNNs

 Autoencoders

Challenge: very data hungry methods!



2-D vs 3-D “Trajectories” of Events
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Continue work for testing hypothesis

 C-Q plot (and their sequence) encodes information about where 

erosion is taking place in watershed and it’s transport downstream

Fryirs, 2013 ESPL

VARIABLE

• Sediment Source Areas 

• Location

• Supply

• Connectivity

• Susp. Sediment Yield

• SS – Q Relationships

Fryirs, 2013 ESPL



How do we determine from where riverine sediments originate?

 Sediment Tracers

Kristen 

Underwood  Sediment Budget

 Watershed Modeling

 Repeat Surveying

Stryker et al.

2017
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What if we let the watershed tell us what is going on?



What if we let the watershed tell us what is going on?

 What if we could monitor only the outlet of the watershed and be 
able to infer sediment dynamics within the watershed?

DTS-12 In-situ 

Turbidity Sensor

ISCO Autosampler 

and Datalogger
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A close look at hydrological events
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Streamflow (m3/s) 
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2A

2D

 Shepard Brook

 Aug 4, 2015

 Sep 22, 2013       

An Example: Two storm events to illustrate event sediment dynamics
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 Shepard Brook

 Aug 4, 2015

 Sep 22, 2013       

An Example:Two storm events to illustrate event sediment dynamics



What are hysteresis patterns? 
Two methods of categorizing hysteresis
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Class I - Linear Class II - Clockwise

Class III -

Counterclockwise

Class IV – Linear 

then Clockwise

Class V –

Figure-Eight

Garnett 

Williams, 

USGS, 

1989

 Visual Patterns  Metrics 

(e.g. Hysteresis Index) 

Lloyd et al. 2015

𝐻𝐼 = 𝑇𝑅𝐿 − 𝑇𝐹𝐿



An Example: Looking back at the two storm events
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2A

2D

 2 storm events 
Shepard Brook

 Aug 4, 2015

 Sep 22, 2013       
Clockwise HI

0.27

0.21



Patterns of 

Hysteresis
23

 14 Types 

recognized in 

data from

Mad River 

watershed

 How to 

automate? 



An automated classification system

 Pattern recognition challenge
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Example of classification of storm events

Machine Learning

Restricted Boltzmann 

Machine
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Seasonal trends in hysteresis types
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Mill Brook, Shepard Brook, Folsom Brook, and Freeman Brook

Also identified trends in 

hysteresis patterns by:

• Site

• Drainage Area Size

• Sediment Load



Sediment load by hysteresis type
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Effects of spatial scale on hysteresis type
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 Clockwise types (Class II) most common in tributaries

 Mad River more varied in hysteresis types observed
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Hydrology of monitoring period
30 600+ events identified



Hydrological event analysis
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Automated Classification using a RBM
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Restricted Boltzmann Machine (RBM)

Restricted Boltzmann Machine (RBM)

with Classifier Layer

 RBM application

 Training: 210 events

 Testing: 306 events


