RIVER CORRIDORS / FLOODPLAINS Scott Hamshaw Doug Denu

Sediment Regimes of Vermont Rivers

Kline, M. 2010. Vermont ANR River Corridor Planning Guide: to Identify and Develop River Corridor Protection and Restoration Projects, 2nd edition. Vermont Agency of Natural Resources. Waterbury, Vermont.

Browns River

JERICHO

66 M14

Tyler Branch

ENOSBURG

55_M07-

55_M10B 5/

55_T4.0

An Increasing Risk of Flooding in Vermont

- & Expected increase in streamflows
- Mistorical development along river corridors

Map by Ben Copans and Barry Cahoon

Expanding modeling of river corridors and sediment in the IAM

Sediment Transport Regime Prediction

 Most interested in identifying regimes, where restoration / conservation could most effectively support a return to the natural regime

Valley Confinement	Sediment Transport Regime	Slope	Valley Confinement Ratio	Incision Ratio	Entrenchment Ratio	Width/Depth Ratio
Confined Partly Confined	Transport	≥2 %	< 6	< 1.3		< 12 (A, G)
	Confined Source &				< 1.4 (< 2.2)	> 12 (F B)
	Transport		≥ 1			(1, 2)
Unconfined	Unconfined Source & Transport	< 4 %	≥ 4 ≥ 6	> 1.3	> 2.2	< 30 < 12 (E)
	Fine Source & Transport and Coarse Deposition	< 2 %				> 30 (B, C) > 12 (E)
	Coarse Equilibrium & Fine Deposition			< 1.3		> 40 (D) < 30 (C) < 12 (E)
	Deposition			1.0		> 30 > 40

Kline, M. 2010. Vermont ANR River Corridor Planning Guide: to Identify and Develop River Corridor Protection and Restoration Projects, 2nd edition. Vermont Agency of Natural Resources. Waterbury, Vermont.

Underwood, et al., 2018 (in preparation)

Stream Reach Sediment Regime Model

Self-Organizing Map (SOM) clustering based predictor

Data Inputs :

- & Slope
- **& Valley Confinement**
- & Streampower
- & Width-to-Depth Ratio
- & Incision Ratio
- & etc...

Scenario: Protection of limited number of reaches

Optimization model allows analysis of possibilities

□ What factors to weight in prioritization of reaches?

Interventions	

Affects Optimization Results & Weighting

Example Objective Function	How to weight?
Sediment Regime Type	0.2
Distance upstream from communities	0.2
Streampower	0.2
Cost	0.2
Land Use along reach	0.2
	1.0

Example reach selection

- Sediment regime: FST
- Cost of conservation easement
- Distance upstream of town center
- Specific Stream Power:
- Land Use within 200 ft buffer:

An example intervention/change gradient

Floodplain Function Gradient

An example intervention/change gradient

Channel Stability Gradient

