

BREE Ecology Team PTAC Update

Dustin Kincaid and Andrew Schroth

Focus on Extreme Events and Resilience –

What are the properties and processes critical to maintaining water quality resilience across soil-stream-lake system of the LCB?

Ecological Research

Resilience to Extreme Events Across Soil-River-Lake Continuum

Ecological Research

Resilience to Extreme Events Across Soil-River-Lake Continuum

Cutting edge sensor network

Major Features of the BREE Integrated Assessment Model

- Integration is enabled in BREE IAM
- **◄** Integration is being tested/planned in BREE IAM

Land use & season influence event-scale nitrate and phosphorus exports & export stoichiometry from headwater catchments

Dustin Kincaid

Erin Seybold, E. Carol Adair, William Bowden, Julia Perdrial, Matthew Vaughan, Andrew Schroth

Acknowledgements

Co-authors

Erin Seybold

E. Carol Adair

Breck Bowden

Julia Perdrial

Matthew Vaughan

Andrew Schroth

Collaborators & support

Saul Blocher

Scott Hamshaw

James Shanley

Andrew Vermilyea

Funding

The relative availability or stoichiometric ratios of N & P, can affect autotrophic biomass and production

And N:P can influence the likelihood of harmful algal blooms

Tributary inputs are important for lake chemistry

http://lcbp.org/sol18dev/wp-content/uploads/2018/06/tributary-loading.jpg

External controls on lake chemistry in shallow bays

What controls riverine N and P loading patterns on the event-scale?

Can now predict N & P concurrently using in situ sensors & algorithms

We quantified N & P dynamics for >400 high flow events across three LULCs from 2014-2018

Storms matter for annual loads, though slightly less so for nitrate in the urban site

Agriculture increases event NO₃- yields & masks typical seasonal decline in NO₃- yields

0.00

0.000

0.25

Export ratios decrease from spring to fall & converge close to N:P ratio of 16:1; BUT convergence is driven by different NO₃- & SRP dynamics at each site

Smallest events had greatest magnitude and variability; large events drive down export ratios

NO₃⁻ & SRP loading

Implications for Lake Champlain

Highest export ratios in spring

Early season rainon-snow / snowmelt events matter A LOT!

Key collaborator: Dr. Erin Seybold, now at the Kansas Geological Survey

Review of 2017-2019 bloom dynamics - Andrew

St. Albans Bay

Both were muted in 2019!