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" Basin Resilience to
Extreme Events

n the Lake Champlai

What are the properties within the Lake Champlain Basin

that drive hydrologic and nutrient responses to extreme events,
and what are strategies for increasing resilience

to protect water quality in the social ecological system?
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Overview of flood inundation modeling

HAND model: A simple GIS-based approach for
mapping flood inundation for a range of flood
recurrence intervals

Objective: Develop flood inundation maps with
greater coverage than existing HEC-RAS models
and greater accuracy than FEMA flood maps

Model Inputs: DEM, land cover, NHD stream
reaches, USGS StreamStats

Depth (m)
High: 3.5

- Low : 0.0001

Supported by VT EPSCoR BREE, LCBP and Gund



Study area and units of analysis

Spatial extent: VT-portion of the LCB

Unit of analysis: NHD reaches with
catchments greater than 10 sq mi

Total length of reaches: 2200 km
Spatial resolution: 1, 7.5, 15m

Flood recurrence intervals:
2,5, 10, 25, 50, 100, 200, and 500 years
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Inundation mapping methods

Step #1: Map height above nearest drainage (HAND)
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Step #2: Estimate discharge for a range of stage values
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Uncertainty analysis

Uncertainty in Manning’s n, slope, cross-
sectional area, and discharge parameters

Uncertainty in these parameters
characterized by truncated normal
distributions

Run Monte Carlo simulation over 1000x
iterations

Map cumulative frequency distribution for
each flood recurrence interval
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Model “validation”

 Data on observed inundation extents for
historical flood events do not exist

« Assume that HEC-RAS models represent
the “gold-standard” for flood inundation
mapping, but are difficult to scale basin-
wide

« Compare with HEC-RAS model outputs
for the Mad River and Otter Creek
watersheds

« Kappa score — aggregate index of how
well the model performed relative to
chance
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Overview of flood damage cost-analysis

* Need to consider the location of
floodplains relative to the locations of
assets (e.g. built structures &
Infrastructure)

« Using GIS overlay analysis & depth-
damage functions, we estimate
damages to properties caused by
flooding

 Implications for spatial prioritization of
floodplain restoration and property buy-
outs




Damage Cost Analysis Methods

Step #1: Overlay inundation map
with locations of built structures to
estimate inundation depth for each

Step #2a: Calculate relative
damage to built structures based

on type of property
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Step #2b: Calculate absolute
damage to built structures based
appraised property values

M 0.00001
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Step #3a: Estimate expected annual
damages, based on probability of
flood events

EAD = | D(p)dp
/

[2,5,10,25,50,
100,200,500]

BAD =5 > [ = 1) (Djer + )]
Jj
EAD = Expected annual damages
D = Damages incurred from event
p = annual probability of event

Step #3b: Estimate net
present value of damages
over 100-year time period

100
NPV = Z[(EAD)(l +p)7t]
t=1

NPV= Net present value

EAD = Expected annual damages
p = Discount rate*

t = Year



Estimated damages across scenarios

Baseline (BL): Reflects Floodplain revegetation (FV): Climate change (CC): Climate change & floodplain

historical frequency and Increase Manning’s n values Increased discharge revegetation (FV & CC):

severity of flood events in floodplains to reflect forest associated with recurrence  Combination of FV & CC
revegetation intervals by 80% scenarios

1.Damages caused by flood inundation to built structures
range from $410 to $514 million over a 100-year time period

2.Climate change is expected increase damages by 44 - 126%

3. Floodplain revegetation reduces these impacts by an
average of 23%



Estimated damages across scenarios

Baseline (BL): Reflects Floodplain revegetation (FV): Climate change (CC): Climate change & floodplain
historical frequency and Increase Manning’s n values Increased discharge revegetation (FV & CC):
severity of flood events in floodplains to reflect forest associated with recurrence  Combination of FV & CC
revegetation intervals by 80% scenarios
T s BL

& 400 m FV

7))

g mm CC

= T mmm FV&CC

£ 300 -

7))

c% T

S 1 T

o 200

© T

3 -

kS - N

= 100 -

; i Ii I )

o - ——

Z —

| | | | | |
Otter Winooski Missisquoi Lamoille Lake Mettawee
Creek River River River Champlain River



> ?g HAND values

Floodwater storage Y

Graphics courtesy Stephi Drago (with TNC support)




Floodwater storage to stormflow ratio (SSR)

where:
Unit Storage (VFp/ DA, uc1o/ Lhuera) Vg, = volume floodplain storageg,
SSR = | V,; = volume stormflowy,
Unit Stormflow (Ve / DAL cs/ Lhucs) DA = drainage areayycys-rp or Hucs-sF

L = channel lengthyyciz.¢p or Hucs-se

USGS 04290500 Winooski River near Essex Junction
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Winooski River Basin Flood Storage Effectiveness for the 50 year Flood by HUC12

SSR:

Floodplain Storage Effectiveness
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Floodplain deposition
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2019 Vermont Floods N

USGS 04282525 New Haven River at Brooksville, NR Middlebury, VT Interval
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Spring 2019 samples
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Spring 2019 samples
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Assessing phosphorus cycling in riparian wetlands
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Assessmg phosphorus cyclmg in riparian wetlands
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Assessing phosphorus cycling in riparian wetlands

Modeled phosphorus pools, transformations, and fluxes.
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Assessing phosphorus cycling in riparian wetlands

dissolved P release risk
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potential for particulate P trapping
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Assessing floodplain connectivity

e Departure Analysis [Fr e le i e

Mad River, VT

Scale of Analysis:
River Corridor by Reach

L 1.1-1.2 Lateral Connectivity,
Constraints

| 1.2.2 Level of Protection

|| 1.2.3 Woody Buffer

Quantify degree of
(dis)connection due to
constraints (roads,
berms, buildings, etc.)
and geomorphic

1.2.4 Lateral River Corridor

¢! 1.2.4 Lateral River Corridor v
Connectivity Score

Connectivity Score

SGAT ID 36_M11- Legend = Opacity

1.2.1 Lateral Meander 92.71

Connectivity

1.2.2 Protection Score 70.87

1.2.4 Later RC Connectivity Score

1.2.3 50-ft Buffer Score 47.68

condition (e.g., incision) L2 78.31 m
@, Zoom to 28

Target Condition: Fully laterally and vertically connected
+ robust administrative protections + woody buffer




Assessing floodplain connectivity

*  Opportunity Analysis e, o g

|dentify potential projects
and practices to restore
and conserve floodplain
functionality.

Mad River, VT
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River Sediment Regime Mapping

Bedrock Alluvial Colluvial
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River Sediment Regime Mapping

Signature Stream Power Metric

sono  EXamine energy distribution at a cross-section and upstream fo
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Sustaining research on basin resilience to extreme events
Vermont’s Functioning Floodplain Initiative

e Which rivers/streams and what percentage of river e,
corridors/floodplains are (dis)connected in a given ' -
watershed due to existing constraints or stressors?

e What is the opportunity to readily achieve
connectivity? How should connectivity be
scored, credited and tracked at a reach and
watershed scale to support a strategic restoration
and protection plan?

vertical

e What are the highest priority reconnection projects?

Riverscape




Vermont’s Functioning Floodplain Initiative

Phase 1 - Form (Physical dimension)
* Maps (static)
e Additive Reach-scale Scoring

Phase 2 - Process (Temporal dimension)
* Linkages (dynamic) & Weighted Scoring
 Static tributary-scale Tracking

Phase 3 - Governance (Human dimension)
* Multi-Objective Optimization
* Network Analysis
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