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hydrologic and nutrient responses to extreme events, and what
are strategies for increasing resilience to protect water quality
in the social ecological system?

WORKING HYPOTHESIS

The structure and state of systems can either dampen or amplify the
cascading impacts of extreme events as their effects flow through
the Social Ecological System of the Basin



FOCAL EXTREME EVENTS

 We define “extreme events” as “meteorological phenomena
such as high temperature and precipitation with consequent
events that are system responses, such as floods or droughts
(Field et al. 2012)”".

* Following specific extreme events are being investigated by
the BREE team in the hydro-meteorological context of the
Lake Champlain Basin:

(1) heavy and persistent precipitation and resulting floods;
(2) intra-annual and inter-annual droughts;

(3) heat waves;

(4) cold snaps; and

(5) extreme changes in the distribution of precipitation form
(snow to rain).
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can be implemented to manage the risk from extreme
events and what are the trade-offs for prioritizing public
sector investments?

Risk from change of state in the

Extreme hydro-climatic event bay: mesotrophic to eutrophic
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Adaptive Management Approach to > AT
Identify Resilient Strategies

BREE IAM Policy & Technical Advisory Committee

(PTAC) consensus on two definitions of resilience:

1: “The Lake Champlain Basin system should maintain critical functions after an
event without significant post-event inputs” [Ex-Secretary, Agency of Agriculture]

2: Ability to provide for public safety and property for as many people as possible
affordably [Town Manager, St. Albans]

Identification of resilient strategies thus requires shared understanding BY ALL
STAKEHHOLDERS of “desirable” alternate states in focal SES that maintain
critical functions and maximize public interest
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Regional Climate Model (ARW-WRF) & 22 Downscaled GCMs
(Precipitation, Temp, Cloud Cover, Wind at 4KM x 4KM) per day with the ability
to simulate extreme meteorological events

=

v

Macro-economic
General Equilibrium
Analysis Model GEAM
(GDP per Capita,
Unemployment,
Assets at zip code level
per year)

v

Governance
Governance
Network Agent
Based Model,
(Policy tools,
resources per year)

A

Land use

Adaptive Land use Land cover change
Agent Based Model (ALL ABM)

(20 Land Use Classifications & 18
BMPs at 30M x 30M per Year)

Watershed
biogeochemistry
Biome-BGC
(P, N, C per day at 90M x

90M )
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Hydrology

Regional Hydro-Ecologic Simulation

System (RHESSys)

(Sediment, Flow, Bank Erosion,
Overland Flow at 5.4KM x 5.4KM per

day)

—p

Integration is enabled in BREE IAM

Integration is being tested/planned in BREE IAM

|
Lake
New Lake Ecosystem
Model, e.g. DELTARES
replaces A2EM
(TP, TN, ChIA density per
hour at 100M x 100M)

Basin Resilience to
Extreme Events
in the Lake Champlain Basin

Feedforward
IAM can
explore
“baseline”
SES behavior
under various
extreme
event
scenarios.
Feedbacks
and couplings
will enable
comparisons



Papers in development from the current

IAM configuration
. Feedforward IAM mid-century projections under
different climatic and P reduction scenarios

. Feedforward IAM end of century projections under
different climatic and land use scenarios

. Feedforward IAM P loading: quadratic vs weighted vs
threshold based regressions

. Feedforward IAM: Sensitivity of HABs to changing
variance in temperature and precipitation

. Feedforward IAM: Farmer BMP adoption and P load
reductions

. Feedback-enabled IAM scenarios



“Ensemble Method” of Scenario Settings Used for
Cascading IAM Version 1.1 Missisquoi Runs, 2000-2050

* Four Climate Scenarios: RCP 2.6, RCP 4.5; RCP 6.0 and RCP 8.5

— Ensemble of five GCMs that are among the best to reproduce late 20" centruy
North-Eastern US climatic conditions identified by Thibeault, J.M. and Seth, A.,
2015. Toward the credibility of Northeast United States summer precipitation
projections in CMIP5 and NARCCAP simulations. Journal of Geophysical Research:
Atmospheres, 120(19).

e LULCC ABM Scenario: Business As Usual

* Hypothetical TP reduction scenarios for BAU LULCC ABM
— 100% TP reduction from 2016-2050 scenario (ex-Secretary Ag scenario)

— 90%, 85%, 80%, 60%...0% TP reduction scenario runs

 Remaining settings are similar to IAM Version 1.0 (e.g. no
additional changes in model settings and calibration as reported
in Zia et al. 2016)
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Concentrations (daily average)
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scenarios under
BAU land use
scenario

Relative
sensitivity of TP
to GCCvs TP
loading reduction
scenario is being
estimated
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Regional Climate Model (ARW-WRF) & 22 Downscaled GC Watershed
(Precipitation, Temp, Cloud Cover, Wind at 4KM x 4KM) per day wh the ability [ biogeochemistry
to simulate extreme meteorological events Biome-BGC
H Py (P, N, C per day at 90M x
- 90M )
: : Governance :
x — Governance A
S 2 L Network Agent | : L/ ¥
Genen:al Equilibrium [ "|  Based Model, Hydrology
Analysis Model (_?'EAM (Policy tools, " """" Regional Hydro-Ecologic Simulation
(GDP per Capita,  [ewseeess resources per year) | | i System (RHESSys)
Unemp‘loyment, (Sediment, Flow, Bank Erosion,
Assets :te :ISeZT):Ie level — : Overland Flow at 5.4KM x 5.4KM pe
- A . : ; : day )
i - i ‘
Land use Lake
Adaptive Land use Land cover change [¢**" %™ ’ New Lake Ecosystem
Agent Based Model (ALL ABM) S R *| Model, e.g. DELTARES
(20 Land Use Classifications & 18 ) - replaces A2EM
BMPs at 30M x 30M per Year) ) (TP, TN, ChlA density per
hour at 100M x 100M)

— Integration is enabled in BREE IAM
------ > Integration is being tested/planned in BREE IAM
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Missisquoi river watershed

Legend

® USGS gauge
—— rivers
dem (m)
- High - 117244

- Low : 16.9801

Missisquoi river watershed and
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Scheme
Fertilizer (DIP)

Fertilizer (DOP)
Harvest date

Scheme 0

For Non-Ag

Different area may have
different management
practices

Need more accurate spatial-
explicit management
information

2001 Ag and Non-Ag landuse

Scheme 1

DIP
Date Amount
1991/5/20 3 (g/m2)
1992/5/20 3 (g/m2)

DOP
Date Amount
1991/5/20 1 (g/m2)
1992/5/20 1 (g/m?2)

Harvest
Date
1991/9/20
1992/9/20




BAU 2021 proForest 2021 proAg 2021

BAU 2031

proForest 2031

BAU 2041 proForest 2041

& B,
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'S
S
Py Regional Hydro-Ecologic
Simulation System
R SOIL

warce RO\ GCM downscaled climate

Legend L'y
- ) - Developed, Med Intensity - Evergreen Forest I:l Pasture/Hay - § A, B data
- open water - Developed, High Intensity I:l Mixed Forest - Crop : el & & 210 i

Developed, Open Space - Barren - Shrub I:| Woody Wetland

- Developed, Low Intensity - Deciduous Forest Grass - Herbaceous Wetland

Landuse change for Business As Usual, Missisquoi river Streamflow and nutrients
proAg and proForest scenarios




St. Albans City
Subcatchments

St Albans City
Impervious
Surfaces

Lake Champlain

St Albans Bay
Catchment

.f""" St Albans Bay

Jewett & Stevens Brooks

e iles

model to include
representation of
urban
stormwater
infrastructure:
SWMM model
linked with
Rhessys



St. Albans City
Subcatchments

St Albans City
Impervious

Spatial stormwater
infrastructure data for
stormwater (SWMM) model
(pipe diameters, slopes,
junctions, inlets, etc).




Regional Climate Model (ARW-WRF) & 22 Downscaled GCMs
(Precipitation, Temp, Cloud Cover, Wind at 4KM x 4KM) per day with the ability
to simulate extreme meteorological events

H

‘.‘

: Governance
A 4
- - Governance
Macro-economic | Network Agent
e Based Model,
Analysis Model v’::‘-EAM (Policy tools,
(GDP per Capita, ~ [@======= resources per year)
Unemployment,
Assets at zip code level v
per year) :
: A : : :
v P 3 v

Land u;e
Adaptive Land use Land cover change
Agent Based Model (ALL ABM)
(20 Land Use Classifications & 18
BMPs at 30M x 30M per Year)

‘ Basin Resilience to
Extreme Events
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in the Lake Champlain Basin

Watershed
biogeochemistry
Biome-BGC
(P, N, C per day at 90M x

90M )

s

egional Hydro-Ecologic Simulation

Hydrology -

System (RHESSys)

(Sediment, Flow, Bank Erosion,
Overland Flow at 5.4KM x 5.4KM per

day)

F 3

— > Integration

is enabled in BREE IAM

------ > Integration is being tested/planned in BREE IAM

Lake
New Lake Ecosystem
Model, e.g. DELTARES

replaces A2EM

(TP, TN, ChlA density per

hour at 100M x 100M)
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Coupling with
Deltares’s own
DELWAQ or
another open
source model like
CAEDYM, PCLake
expected in 2018-
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Basin Resilience to

Extreme Events
in the Lake Champlain Basin
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Can we use deep learning and a
“library” of hydrological event

types to characterize sources of

sediment and nutrients from
high- frequency sensor data?
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Regional Climate Model (ARW-WRF) & 22 Dq Watershed

biogeochemistry
Biome-BGC

: Governance
- - Governance
S 2 L Network Agent :
General Equilibrium [~ "|  Based Model, Hydrology

Analysis Model GEAM
(GDP per Capita, MAURRECEEE
Unemployment,

Assets at zip code level

(Policy tools,
resources per year)

Regional Hydro-Ecologic Simulati
System (RHESSys)
(Sediment, Flow, Bank Erosion,
Overland Flow at 5.4KM x 5.4KM per

per year)
= A [l day )
v i - ¥
Land use Lake
Adaptive Land use Land cover change [¢**" %™ New Lake Ecosystem
Agent Based Model (ALL ABM) S R \lodel, e.g. DELTARES

(20 Land Use Classifications & 18 >
BMPs at 30M x 30M per Year)

oplaces A2ZEM

F 3

— Integration is enabled in BREE IAM
------ > Integration is being tested/planned in BREE IAM
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Basin Resilience to
Extreme Events
the Lake Champlain Basin

(Weather Research and Forecasting Model; WRF)

2. Refine WRF to better capture extreme events (e.g.,
flooding, heatwaves, drought, cold snaps)

3. Work with Integration Team to include WRF climate

scenarios in IAM
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Basin Resilience to

Extreme Events
the Lake Champlain Basin
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climate scenarios:
* Baseline (1980-2009)
* Future (2036-2065)

* Compute monthly changes in statistical
moments and distribution parameters

* Examine changes in extreme events

* Perturb Daymet gridded data (1980-2009)
using scenario-informed monthly changes

== BREE

‘ Basin Resilience to
Extreme Events

in the Lake Champlain Basin
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What is the most accurate statistical
method for estimating phosphorus loads
of LCB rivers?

How might changes in daily precipitation and
temperature variability affect cyanobacteria
blooms?
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Regional Climate Model (ARW-WRF) & 22 Downscaled GCMs

(Precipitation, Temp, Cloud Cover, Wind at 4KM x 4KM) per day with the ability
to simulate extreme meteorological events

== BREE

‘ Basin Resilience to
Extreme Events

Watershed
biogeochemistry
Biome-BGC

H

acro-economic
eneral Equilibrium
Analysis Model GEAM
(GDP per Capita,
Unemployment,
Assets at zip code level
per year)

Governance
Network Agent
Based Model,
(Policy tools,

resources per year)
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Land u;e

Adaptive Land use Land cover change
Agent Based Model (ALL ABM)
(20 Land Use Classifications & 14
BMPs at 30M x 30M per Y4

(P, N, C per day at 90M x
90M )

in the Lake Champlain Basin

s

L

Hydrology
Regional Hydro-Ecologic Simulation
System (RHESSys)
(Sediment, Flow, Bank Erosion,
Overland Flow at 5.4KM x 5.4KM per

day)

Lake
New Lake Ecosystem
Model, e.g. DELTARES

replaces A2EM

— Integration is enabled in BREE IAM
------ > Integration is being tested/planned in BREE IAM

F 3

(TP, TN, ChlA density per
hour at 100M x 100M)




Current Structure &
Processes

A\ 4

Theory based decision
heuristics (e.g. Game
Theory, Theory of
Planned Behavior etc.)

ALL ABM

T

Planned extensions
(2017-2019)

Machine learning based
decision heuristics (e.g.
ANNs, DBNNs etc.)

N

Reinforcement learning
based decision
heuristics (e.g. Q-
learning, SARSA etc.)




Who, and how likely are
people — farms — to adopt
specific best

bl ! B SRR

Yyag @ty e

L management practices?

¢) Fertilizer Application
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How might alternative ? ‘m“
governance structures H H‘ “
and institutional rules ‘ ‘ ‘
affect water quality in the " ’ ? .
LCB? : ‘ . .
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Embedding risk and spatial intelligence in = e
adaptive agents of ALL ABM and Governance
Network ABM

* Risk perception of lake water quality changes at the
landscape agent level (farmers, urban firms,
households, foresters) and their respective response
strategies

* Land value sensitivity to water quality
» Adoption of BMPs by farmers and urban firms/households

* Risk perception of lake and watershed water quality
changes among governance network actors (town
governments, regional, state and federal agencies)

* Reactive versus proactive design and implementation of
policies
» Spatial cognition of hysteresis

Thrust 8: Goal 3.2



Expected Rewards (R)
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Basin Resilience to
Extreme Events
In the Lake Champlain Basin

Goal 8.2

Thrust 3:




(Precipitatigg

: ate Model (ARW-WRF) & 22 Downscaled GCMs
emp, Cloud Cover, Wind at 4KM x 4KM) per day with the ability
to simulate extreme meteorological events

(GDP per Capita,
Unemployment,
Assets at zip code level
per year)

(Policy tools,
resources per year)
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: Governance
¥ : Governance
L e Network Agent | i 4
General Equilibrium === Based Model,
Analysis Model GEAM by .

Land u;e

Agent Based Model (ALL ABM)

(20 Land Use Classifications & 18

BMPs at 30M x 30M per Year)

Adaptive Land use Land cover change
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== BREE

Basin Resilience to
Extreme Events
in the Lake Champlain Basin

Watershed
biogeoch&mistry
Biome-B
(P, N, C per day at 90N
90M )

s

L

Hydrology -

Regional Hydro-Ecologic Simulation

System (RHESSys)

(Sediment, Flow, Bank Erosion,
Overland Flow at 5.4KM x 5.4KM per

day)

F 3

—

Integration is enabled in BREE IAM
Integration is being tested/planned in BREE IAM

Lake
New Lake Ecosystem
Model, e.g. DELTARE
replaces A2EIY
(TP, TN, ChlA gefisity per
UOM x 100M)




== BREE
‘ Basin Resilience to
Extreme Events

in the Lake Champlain Basin

HIERARCHICAL
MODELING

OBJECTIVES: Min eutrophic days
Min bloom duration

Min cost = ! ! ! Missisquoi basin
Max economic output i regulators
£ . | |

DECISIONS:  Investments Zz 5 5 5
Regulations T:," Subwatershed
Incentives ‘2' : —{ and municipal
Programs 2 | decision makers
Treaties =

CONSTRAINTS: Budget v/\7 > Landc;wners
Regulations N (farmers,
Site characteristics Pollution Control Costs ] residents,

\ Stakeholder equity \ businesses) /

Objectives, decisions and constraints will be iteratively refined with
stakeholders as extreme event cascades and couplings are simulated
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