Multi-objective optimization - overarching modeling goals

- Evaluate tradeoffs between bloom mitigation costs and impacts
- Evaluate inter-sectoral and intergenerational tradeoffs
- Compare mitigation objectives:
 - Meeting total phosphorus TMDL
 - Minimizing bloom impacts, meeting total phosphorus TMDL
- Identify plans robust to plausible climatic and societal uncertainty
- Compare top-down and bottom-up governance perspectives

Optimization model implementation

Phase 1: Coarse-scale model of Vermont's Lake Champlain basins

- Will recommend allocation of state funds to basin-scale nutrient management efforts under present conditions
- Leverages recent TMDL modeling work
- Focuses on reducing phosphorus exports to Lake Champlain

Phase 2: Fine-scale models of Missisquoi and St. Alban's bays

- Coupled with BREE IAM models, including land-use model and governance ABMs
- Account for 21st century climatic and societal uncertainty

Evaluating decentralized basin planning with hierarchical optimization

 State budgets allocated to different basin-planning projects

- Tactical basin plans (TBPs) convene local stakeholders
- Stakeholder-defined TBP goals may vary from state goals

- Hierarchical optimization considers governance networks
- Emerging applications in other areas of water resources

Near-optimal solutions

- "Optimal" might imply absolute best solution
- Models do not represent realworld perfectly
- "Near-optimal" solutions may be preferred
- Can reveal wide range of feasible strategies
- Encourages iterative model development with stakeholders

Identifying critical planning scenarios through Monte Carlo simulations

- Scenarios from cascading IAM defined by changes in:
 - Climate (emissions x GCMs)
 - Land use
 - Governance
- Computational resources limit number of scenario runs
- Sensitivity analyses guided by Latin Hypercube Sampling
- Use exploratory modeling to approximate impact thresholds
- Must simulate sequences of floods and droughts well!

Simulating sensitivity to climate uncertainty (hypothetical example)

Identifying robust adaptation plans

PLANNING FOR SCENARIO A (MAJOR CHANGE) PLANNING FOR SCENARIO B (NO CHANGE) ROBUST PLANNING ACROSS SCENARIOS

Incorporating parameter uncertainty in optimization models

- Nonlinear optimization methods will be used to calibrate numerous model parameters
- Will consider synergistic effects of parameter uncertainty (e.g. Sobol sensitivity analysis)
- Can represent parameter uncertainty impacts on decisions through interval and stochastic optimization
- Bayesian meta-analyses from literature reviews provide option for characterizing BMP uncertainty

- Calibration errors often omitted from simulated data
- Can cause simulated variance to be lower than observed variance
- Can be adjusted by:
 - Reincorporating calibration errors into stochastic model
 - Calibrating to extremes
- Must track propagation of calibration errors through IAMs

SIMPLIFIED RAINFALL-RUNOFF MODEL

$$Q = a + bP + \varepsilon$$

SIMULATION MODEL

$$\widehat{Q} = a + bP$$

MODEL VARIANCE

$$\sigma_Q^2 = b^2 \sigma_P^2 + \sigma_{\varepsilon}^2$$

