

The Optimal Spatial Scale in Watersheds for Predicting Nutrient Concentrations

Dalton S. Gomez Dr. Robert Genter Johnson State College

Outline

- Introduction
- Hypothesis
- Methods
- Results
- Discussion
- Future Work
- References
- Acknowledgements

19 sampling sites in the Lamoille River watershed

Introduction

- Land use within watersheds directly affects the water quality of the rivers
- Land use composition is used to predict concentrations of nitrogen and phosphorus in the rivers

Hypothesis

- Different spatial scales are used to predict nutrient concentrations
- A unique radial distance upstream exists that leads to an optimal correlation between land use data and nutrient concentration data.

The interval-based method used in this research

Nutrient Concentration Methods

- Water samples analyzed with EPA Standard Methods
 - Total Nitrogen
 - Total Phosphorus
- Only high-discharge sample dates were considered
 - Within 24 hours of a discharge peak greater than 1000 cfs on the Johnson, VT USGS hydrograph
- 80 water samples considered
 - 10 stream sites
 - From 2012 to 2014

GIS Methods

- ESRI ArcGIS v.10.2
- Vermont Center for Geographic Information datasets
 - 2010 Land Use Raster
 - Composite Variables Generated:
 - Percent Total Agriculture
 - Percent Total Developed
 - Percent Total Natural Vegetation
- Land use data extracted at 1km radial intervals upstream from the sample sites
 - 10 Watersheds

Statistical Methods

- Pearson Product-Moment Correlation Coefficient
 - Nutrient Variables
 - Total Nitrogen
 - Total Phosphorus
 - Land Use Variables
 - Percent Total Agriculture
 - Percent Total Developed
 - Percent Total Natural Vegetation
 - Correlation computed at each 1km radial interval upstream
- Correlation Value (r)
 - Greater than 0.50 is a large effect size (Cohen, 1988)
 - Enough variation is explained between datasets to scientifically infer causality

Results

Correlation Between Nitrogen and Phosphorus and Anthropogenic Land Use Percents

Results

Correlation Between Phosphorus and Land Use Percent Over Upstream Distances

Discussion & Future Work

- The land use up to the 3-4km radial distance upstream will provide an optimal nutrient concentration modeling
- Similar analysis with:
 - 100m Interval Belt Transect
 - Functional Distance
 - As the stream flows

The 100m interval belt transect method

Acknowledgements

- Funding provided by NSF grant EPS-1101317
- Thank you to the National Science Foundation, Vermont EPSCoR, the CWDD at St. Michael's College and Johnson State College for the opportunity to conduct this research
- Thank you to Dr. Bob Genter for guidance during the research
- Thank you to Saul Blocher for colleagueship and mentoring
- And a very special thank you to the 2014 JSC EPSCoR team, Kateri Bisceglio, Chelsea Cole, Josh Hunt, Todd Lantery & Laura Orvis, for an outstanding summer

References

- Allan, J. D. (2004). Landscapes and riverscapes: the influence of land use on stream ecosystems. *Annual Review of Ecology, Evolution and Systematics* 35: 257-284.
- Carpenter, S. R., Caraco, N. F., Correll, D. L., Howarth, R. W., Sharpley, A. N. & Smith, V. H. (1998) Nonpoint pollution of surface waters with phosphorus and nitrogen. *Ecological Applications*, 8: 559-568.
- Cohen, J. (1988). *Statistical Power Analysis for the Behavioral Sciences*. Hillsdale, NJ: L. Erlbaum Associates.
- Johnson, R. K., Furse, M. T., Hering, D. & Sandin, L. (2007) Ecological relationships between stream communities and spatial scale: implications for designing catchment-level monitoring programs. *Freshwater Biology* 52: 939-958.
- Tu, J., & Zong-Guo, X. 2006. Assessing the impact of land use changes on water quality across multiple spatial scales in Eastern Massachusetts. *Middle States Geographer* 39: 34-42.
- Li, F., Chung, N., Bae, M., Kwon, Y., & Park, Y. (2012). Relationships between stream macroinvertebrates and environmental variables at multiple spatial scales. *Freshwater Biology*, *57*(10), 2107-2124.
- Sponseller, R. A., Benfield, E. F., & Valett, H. M. (2001). Relationships between land use, spatial scale and stream macroinvertebrate communities. *Freshwater Biology* 46: 1409-1424.
- Townsend, C. R., Doledec, S., Norris, R., Peacock, K. & Arbuckle, C. (2003). The influence of scale and geography on relationships between stream community composition and landscape variables: description and prediction. *Freshwater Biology* 48: 768-785.

The 2014 JSC RACC Team

