Data Analysis: Comparison of Macro Invertebrate Species Richness
Between Urban and Forested Streams

(1ni) SAINT MICHAEL'S COLLEGE

1 Community College of Vermont; 2 Department of Biology; St. Michael's College

Abstract

Macro invertebrate samples are routinely subsampled to reduce processing time. Sub sampling can cause the loss of rare taxonomic groups resulting in lower species richness values. A solution to this problem is to scan the remaining sample for extra species that were absent from the subsample. As data are routinely collected, sub sampling can increase variability in the lab. I question how successfully our sub sampling has been by comparing the species count and richness found in tandard subsamples to the samples with additional macro invertebrates species counted beyond the sub samples. The analysis compares the richness data between streams using standard subsamples, and using subsamples plus extras. When comparing urban and forest streams the addition of the extras may not be enough to create larger or smaller marginal difference between the data.

Background

Macro invertebrates are used to assist in understanding many aspects in the health of hydraulic based ecosystems and communities vary for many reasons. The variables that influence communities include temperature, ubstrate size, droughts, floods, the surrounding land use, natural cover and he influence of development and disturbance. Consistency of procedure in ollecting data can be crucial to minimize artificial variability.
Similar to (Doberstein 2000), "We want to examine variability in metric values as a function of subsample size. As multiple replicate samples are analyzed from the same site, the resulting metric value vary about the unknown, true site values."

Procedure

Six streams were paired to compare, 3 forested streams with 3 Urban streams. Six standard macro invertebrate kick samples were taken from each site. Eac sample was subsampled to yield a minimum of 80 macro invertebrates. The remaining sample was scanned for taxonomic groups not found in the subsample.
Step 1: All different identifiable invertebrate species are counted and recorded in each urban stream sample.
Step 2: The species count for each site was averaged.
Step 3: Step 1 and 2 is then repeated for the forested stream to compare with the Urban stream.
Step 4: Once 2 data sets of species richness is counted for in both sites, a bar graph and ANOVA data analysis were created to compare the streams with and without extra species accounted for.
Step 5: Next add all extra species not accounted for to the sub samples of the two streams previously compared to each sites sample and repeat all steps 1-4 for the for all samples in both sites with extras.
Step Six: Once a 2 bar graphs and ANOVA are found, one graph and a-nova that compares the 2 streams without 'extras' and another bar graph and ANOVA comparing the streams with the 'extras' data.
With the 2 p -values of both comparisons with and without extras, the difference between the two p -values can be found for all three experiments.

Data Analysis
Allen Brook(Urban:07-13-12) V. Browns River(Forested: 07-02-2012)

Centennial Brook(Urban:07-02-2012) V. Snipe Island Brook(Forested: 06-01-12)

Englsby(Urban:07-09-12) V. Snipe Island Brook(Forested:06-22-12)

Results

Allen Brook and Browns river.
Without extras included we found that the average Species richness of Allen Brooks was 15.6 with a standard error of 0.6146 , and Browns River average was 14.3 with a standard error of 1.2823 . When comparing both sets of data without
extras the p-value was 0.3705 . When including all extras data we found that Allen Brooks average increased too 17 with a standard error increase to 0.7302 . When adding extras for Browns River we found an average increase too 17.8333 with a standard error increase to 1.7591 . When comparing the extras data sets the p-value increase to 0.6710 .
Centennial Brook and Snipe Island Brook
Without extras included Centennial Brook had an average of 8.16 and a standard Without extras included Centennial Brook had an average of 8.16 and a standard error of 2.2123 . The p-value when comparing data sets without extras was 0.02 With extras included Centennial Brook had an average 10.16 and a standard error of 0.9803 and Snipe Island Brook had an average of 15.83 and a standard error of 2.4821. When comparing the extras data sets the p-value increased too .0596 ..

Englsby and Snipe Island Brook.
Without extras included Englsby had an average of 11.66 and a standard error of 1.2494. When comparing the sets without exte of 18.1667 and a standard error tras included Englsby had an average of 13 as the p-value was 0.0009 . With Snipe Island Brook had an average of 24.66 and a standard error of 2.0439 . Whe comparing the data sets with extras the p-value fell to 0.0002 .

Conclusion

Even when starting with a notable difference in species richness between Urban and Forested streams without extras, there are enough addition species found in the extras data for both Urban and Forested streams to offset any occurring marginal differences between them. The p -values when finding the difference between the ANOVA results for all three comparisons showed no major increase or decrease to suggest that adding the extras would not greatly change the comparisons between these small streams.
This could suggest that each sampling done throughout all sites were done with low variation and that the picking process done without bias in the lab.

Works Cited

-Conquest, L Loveday, Doberstein, P. Craig, Karr, R. James; 2000 The effect of fixed-count subampling on the macro invertebrate biomonitoring in small streams.
Freshwater Biology $44,355-371 /$ Freshwater Biology 44, 355-3711
-Berg, M. B., Cummings, K.W., Merrit R.W.; 2008. An Introduction to the Aquatic Insect of North America: Fourth Edition. Kendall Hunt Publishing. 1214 pages.

Acknowledgements

I would like to thank Vermont EPSCoR, Saint Michael's College (Colchester, VT, Professor Declan McCabe (St. Michael's College) for his help in coordinating the I most sincerely thank my Mother and Father for always believing Grandfather Joseph F. Heckle, owner and operator of the Selkirk Lighthouse for 37 years, whom recently passed away.
Funding provided by NSF Grant EPS-1 101317

