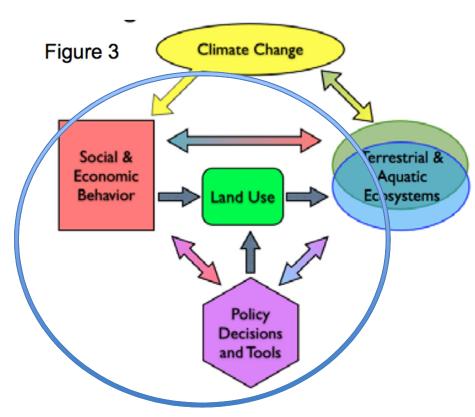


"Q3" Social, Policy and Governance: Accounting for Human Behavior and Decision Making in Modeling Watershed and Basin Wide Dynamics

Christopher Koliba, Ph.D.

Science Leader, Research on Adaptation to Climate Change (RACC)


Professor of Community Development & Public Administration University of Vermont

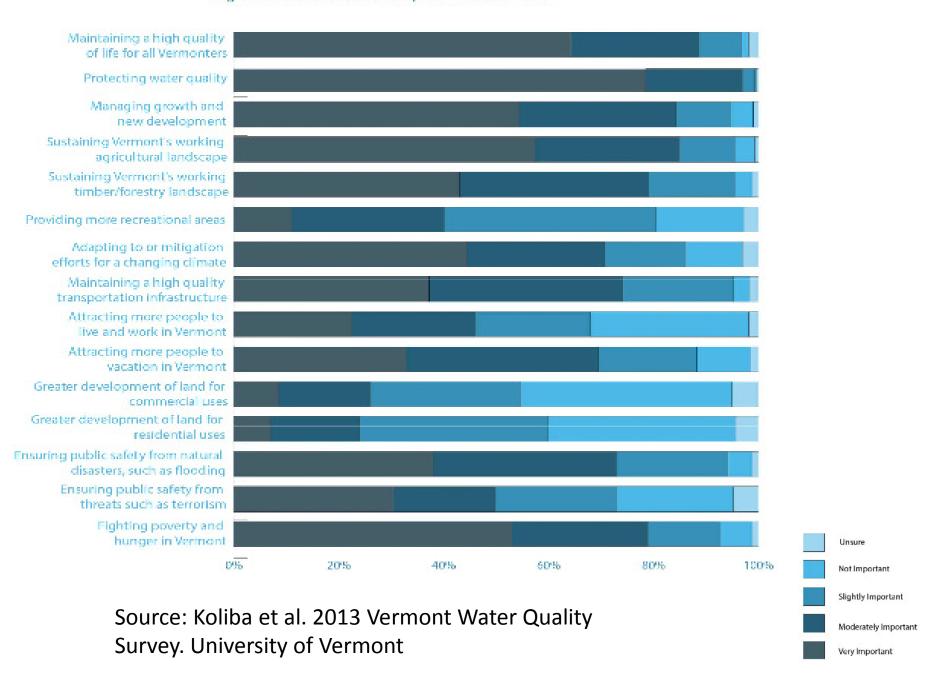
Pop quiz

- How many of you have shopped at an area box store or mall?
- How many of you have traveled on one of VT's back roads?
- How many of you have eaten food grown in VT?
- How many of you have drank BTV tap water?
- How many of you have swam in Lake Champlain?
- How many of you have thought twice about swimming in the Lake?
- How many of you have voted in a VT election?
- How many of you have based your vote on the candidate's position on water quality?

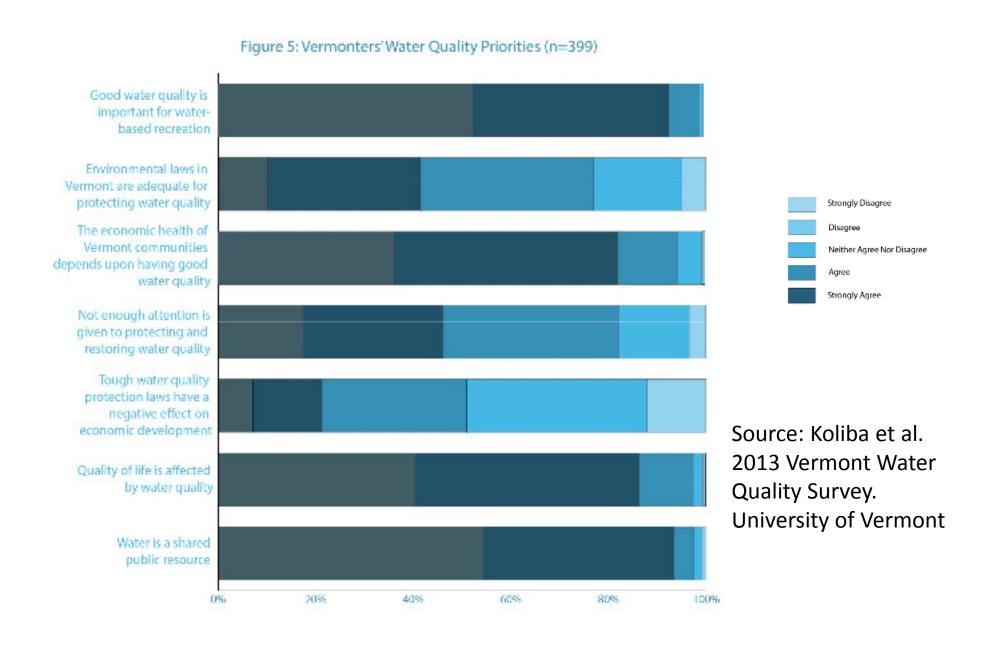
In the face of uncertainties about climate change, land use and lake response scenarios, how can <u>adaptive</u> <u>management</u> interventions (e.g. regulation, incentives, treaties) be designed, valued and implemented in the multi-jurisdictional Lake Champlain Basin?

EPS 1101317

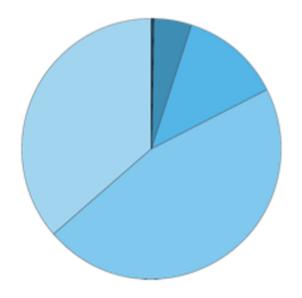
Q3: In the face of **uncertainties** about climate change, land use and lake response scenarios, how can **adaptive management interventions** be designed, valued, and implemented in the multi-jurisdictional region?

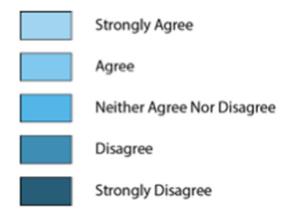

Human beings as critical agents within a watershed...

... and the decisions they make.


- How does the public feel about water quality issues?
- How is the problem framed?
- How are land use decisions made?
- How water quality is governed?
- What interventions can be put in place to address the problem?

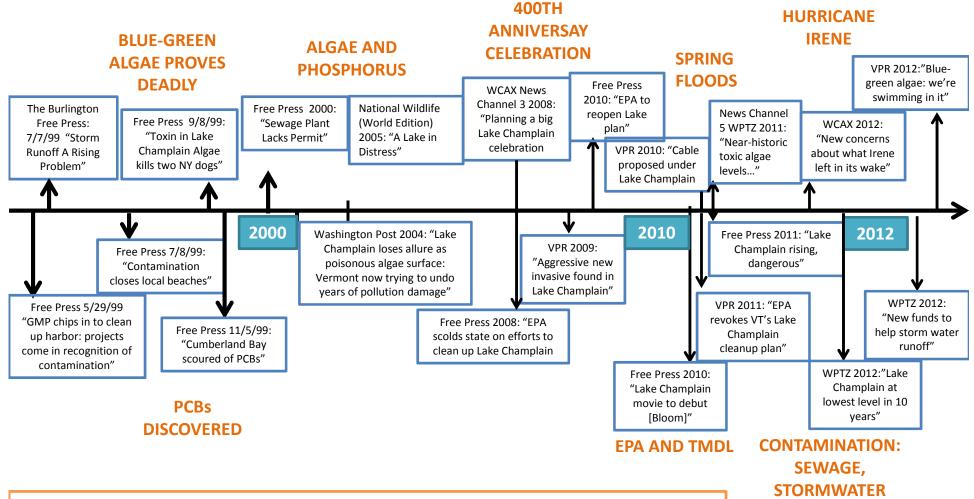
How does the public feel about water quality issues?


Figure 4: Vermonters' Policy Priorites (n=422)

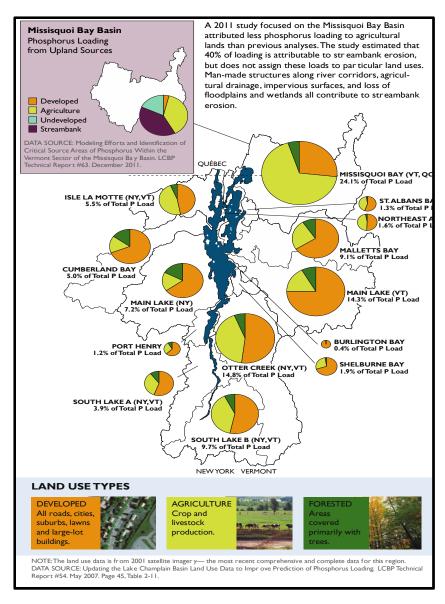


Water quality appears to be important to the Vermonters

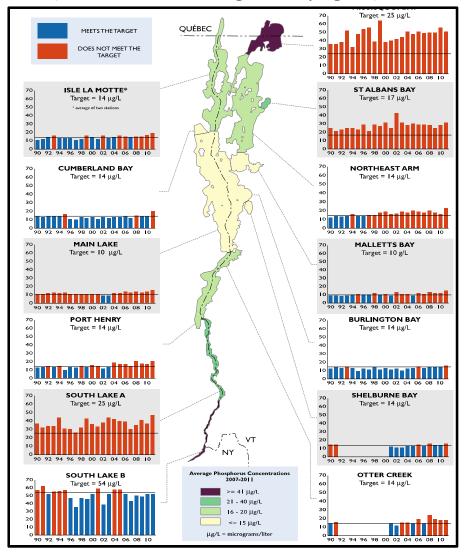
The economic health of Vermont communities depends on having good water quality (all respondents, n=418)



Source: Koliba et al. 2013 Vermont Water Quality Survey. University of Vermont


How is the problem framed?

Timeline of Media Events, Water Quality Policy, Economic & Landuse Trends


Lake Champlain in the Media: 1999-2012

(Archives, Library Holdings, LEXISNEXUS)
Adapted from research done by Shapiro, M. 2012 (EPSCoR Summer Intern)

(SoL, LCBP, 2012, figure 7; page 9)

(SoL, LCBP, 2012, figure 3; page 6)

Interconnecting areas of impact:

AGRICULTURE

RIVER MANAG.

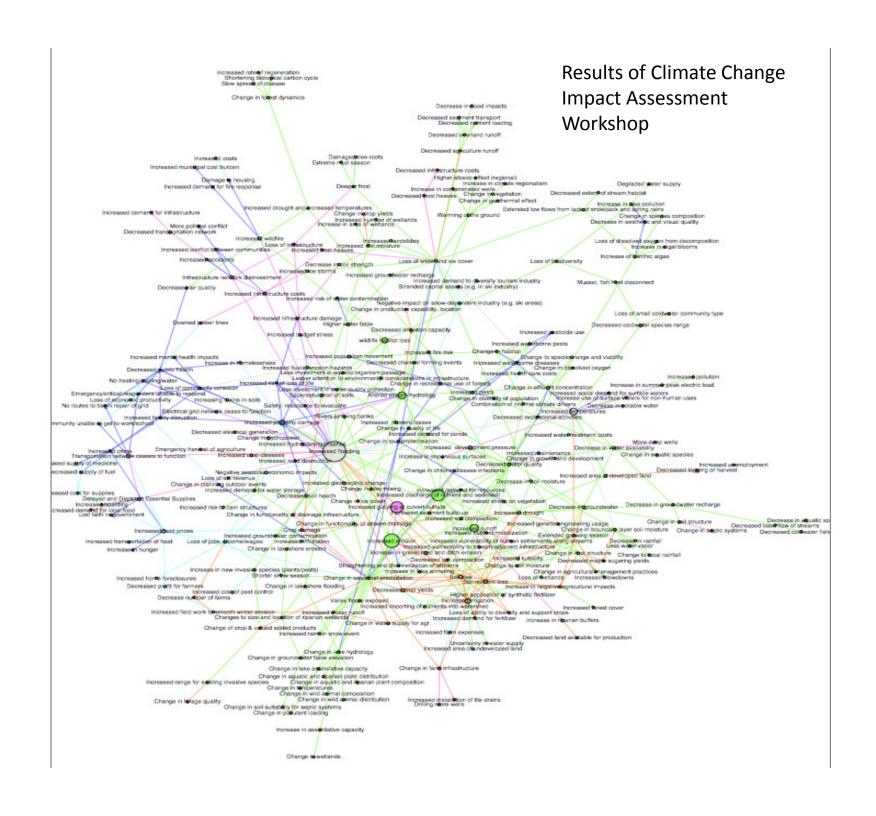
STORMWATER

FOREST MANG.

TRANSPORT.

WASTEWATER

DEVELOPMENT


ENERGY

EMERG. MANG.

PUBLIC HEALTH

Sub-Network: Increase in lake armoring The multi-faceted Straightening and channelization of streams dimension of Increase in gravel road and ditch erosion climate change on Valley floors exposed Increased gullying at culvert outfalls Rivers jumping banks lake hydrology Decreased water quality Increased erosion Increased discharge of nutrient and sediment Increased runoff Increased winter runoff Increased flooding Change in wild animal composition Increased soil compaction Soil nutrient loss Soil loss Change in wild animal distribution in lakeshore flooding Change in water supply for agr. Decreased crop yields Change to self moisture Change in temperatures Change in functionality of drainage infrastructure Change in farm infrastructure Change in lake hydrology Change in boundary layer soil moisture Change in aquatic and riparian plant composition Change in seasonal precipitation Changes to size and location of riparian wetlands Increase in assimilative capacity. Change in chronic disease infections Change in wetlands Change in groundwater table elevation Change in aquatic and riparian plant distribution Crop damage Change of crop & valued added products Change in soil suitability for septic systems Change in functionality of stream drainage Shorter snow season Change in planting outdoor events capacity Change in tourism/recreation Change in recreational use of forests, Negative seasonal economic impacts Increased stress on vegetation What impacts Negative impact on snow-dependent industry (e.g. ski areas) Change in quality of life Loss of snow and ice cover might this have

on our region?

How are land use decisions made and modeled?

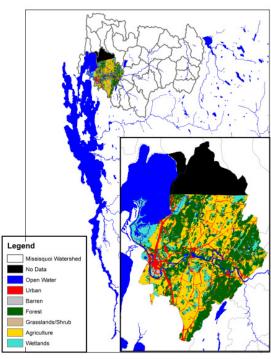


Fig. 2. The western Missisquoi Watershed (colored area) versus the entire Missisquoi Watershed. The colored area displays the observed land-use pattern of the NLCD 1992 eight-class classification system.

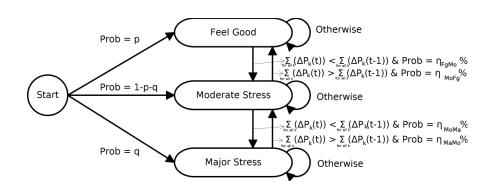
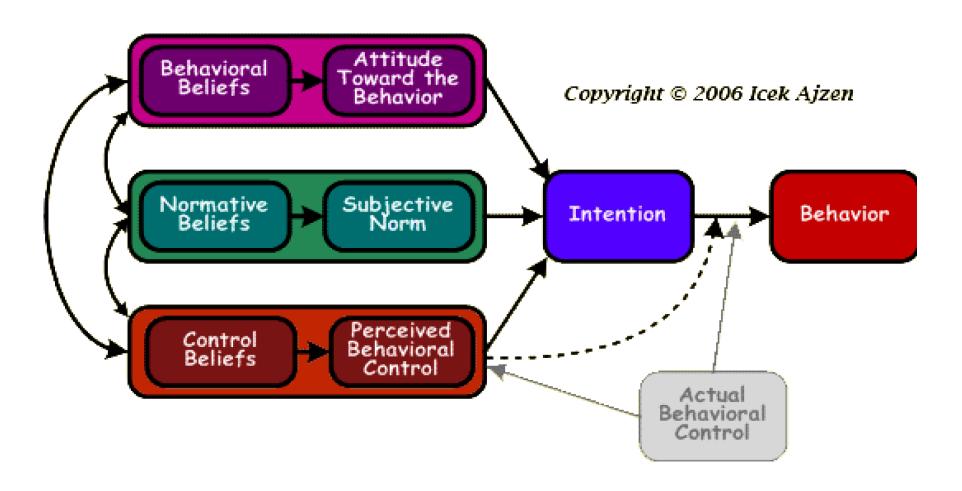



Fig. 4. The dynamics of the farmers' financial conditions over time. $\eta_{FgMo}\%,$ $\eta_{MoFg}\%,$ $\eta_{MoMa}\%$ and $\eta_{MaMo}\%$ are probabilities that a farmer's financial conditions change from one state to another in year t. (change Produtivity(t) to sum(P_i(t))

	Percentage of A Land-use Type				
		2001	2006		
Land-use	Observed Baseline Simulation		Observed	Baseline Simulation	
Code		(Minimum, Mean, Maximum)		(Minimum, Mean, Maximum)	
3, Barren	0.580723	(0.6259332, 0.6475989, 0.6657306)	0.663492	(0.6412154, 0.6730534, 0.7029810)	
4, Forest	37.87183	(37.99822, 38.00752, 38.01924)	38.18089	(37.99791, 38.01631, 38.03675)	
5, Grass	0.936353	(0.8819100, 0.8868767, 0.8949636)	1.186195	(0.8605786, 0.8687928, 0.8819100)	
6, Ag	37.92213	(37.52448, 37.54203, 37.55663)	36.98164	(37.49932, 37.52588, 37.54549)	

TABLE III. Comparison of the percentages of land-use types 3: Barren, 4: Forest, 5: Grass/Shrub, and 6: Agriculture resulting from the baseline scenario to the observed land-use percentages.

Theory of Planned Behavior

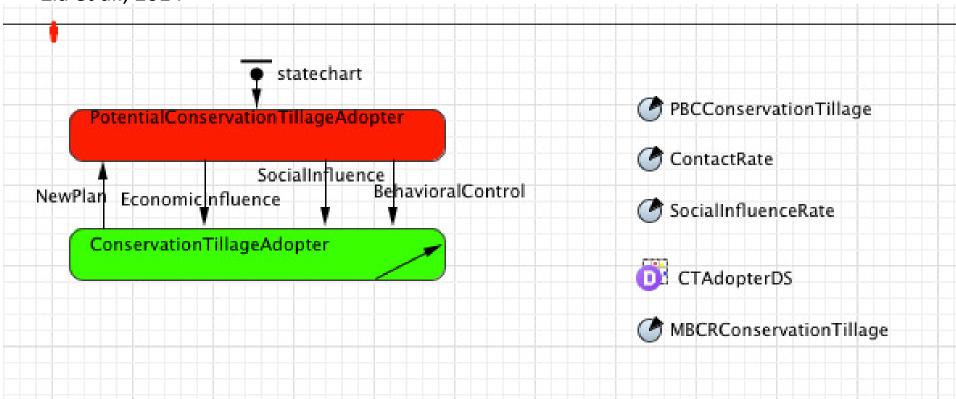
[Updated Source: Fishbein and Ajzen (2010) Predicting and Changing Behavior]

How are best management practices (BMPs) adopted?

Table 2: Weighted OLS Regression Models Predicting Farmer Intention to Adopt Nutrient Management Practices in Missisquoi and Lamoille Watersheds (N=80)

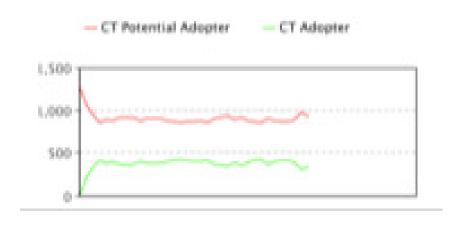
	Planned Crop Rotations	Soil Test at least every three years	Strip Cropping	N, P & K Applications at rates recommended by soil tests	Buffers at field edges
Past Practice	0.6889** (0.2182)	0.1248 (0.2407)	0.9137** (0.4307)	-0.0274 (0.2103)	0.7296** (0.3449)
Attitude	-0.2184 (0.1663)	0.1425 (0.1330)	-0.2848 (0.2388)	0.1429 (0.1389)	-0.3071* (0.1797)
Perceived Social Norm	Omitted due to MC	Omitted due to MC	Omitted due to MC	0.1556* (0.0890)	0.1854 (0.1259)
Perceived Behavioral Control	0.9077*** (0.1378)	0.7750*** (0.0924)	0.8056*** (0.2437)	0.8672*** (0.0936)	0.7883*** (0.1034)
Constant	0.7445** (0.2467)	1.0419** (0.4376)	0.3423** (0.0932)	0.7392** (0.2663)	0.7616** (0.3064)
R ² and (BIC)	0.7354 (343.70)	0.6984 (338.98)	0.8163 (264.53)	0.7909 (321.23)	0.6522 (372.31)

Source: Zia at al, 2013 Farmer BMP Survey, University of Vermont

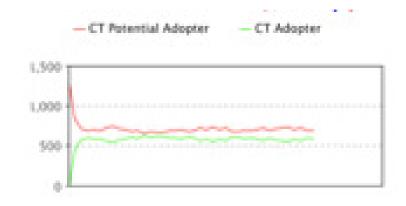

	Cover Cropping	Reduced Tillage (strip, zone and no)	Applying fertilizer at recommended rates and times	Incorporating manure and fertilizer as quickly as possible after application	Manure spreading setbacks (from water bodies and private/public wells)
Past	0.7609**	0.3709**	0.1471	0.4115**	0.2553**
Practice	(0.2590)	(0.1407)	(0.2499)	(0.1754)	(0.1158)
Attitude	-0.0522	0.3152**	-0.0267	-0.0396	-0.0821
	(0.1884)	(0.1412)	(0.1732)	(0.0768)	(0.0823)
Perceived	0.2960**	0.1543*	0.3507**	0.1388	0.1830
Social Norm	(0.1422)	(0 0872)	(0 1441)	(0.0878)	(0.0971)
Perceived	0.6145***	0.5615***	0.7171***	0.8013***	0.9167***
Behavioral Control	(0.1716)	(0.1247)	(0.1145)	(0.1252)	(0.0944)
Constant	0.4697**	0.0767	1.2703**	0.7623*	0.3407
	(0.2076)	(0.1288)	(0.4244)	(0.4455)	(0.2402)
R ² and	0.6960	0.8322	0.5676	0.6678	0.7575
(BIC)	(351.46)	(286.98)	(384.53)	(370.70)	(349.75)

Coefficients with * are significant at p>0.01; ** at p>0.05; and *** at p>0.001. Standard Errors are in Brackets.

Source: Zia at al, 2013 Farmer BMP Survey, University of Vermont

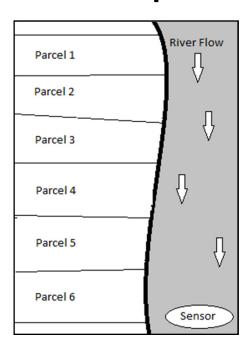

Conservation Tillage Adoption Behavior ABM Design and Calibrated Parameters

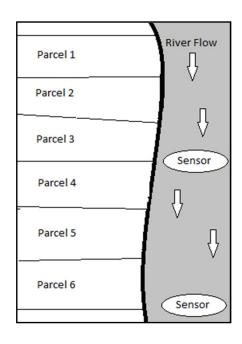
Zia et al., 2014



Parameters	Calibrated Scenario Value
PBC (Conservation Tillage) Rate	0.08 per year
Contact Rate	Uniform (20-60)
Social Influence Rate	triangular(0.005,0.1, 0.01)
MBCR (Conservation Tillage)	triangular(0.01,0.08,0.04)
New Plan	triangular(0.2,2,1)

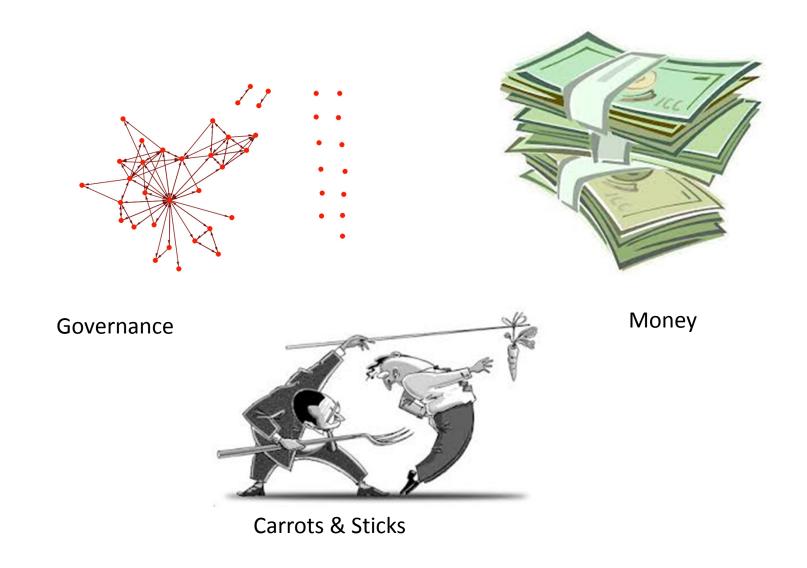
Scenario development from BMP ABM: Technical assistance is a driver of BMP adoption.

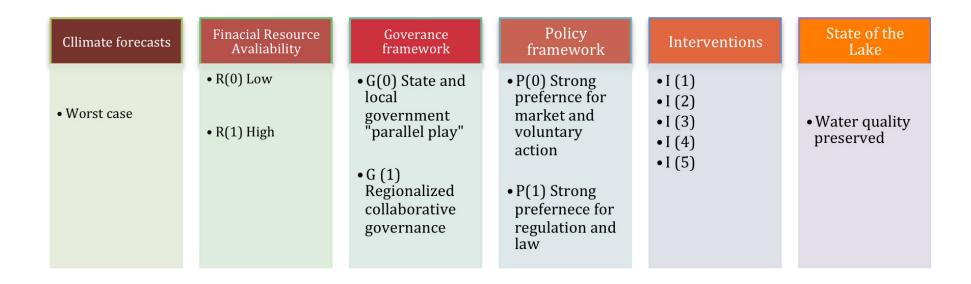


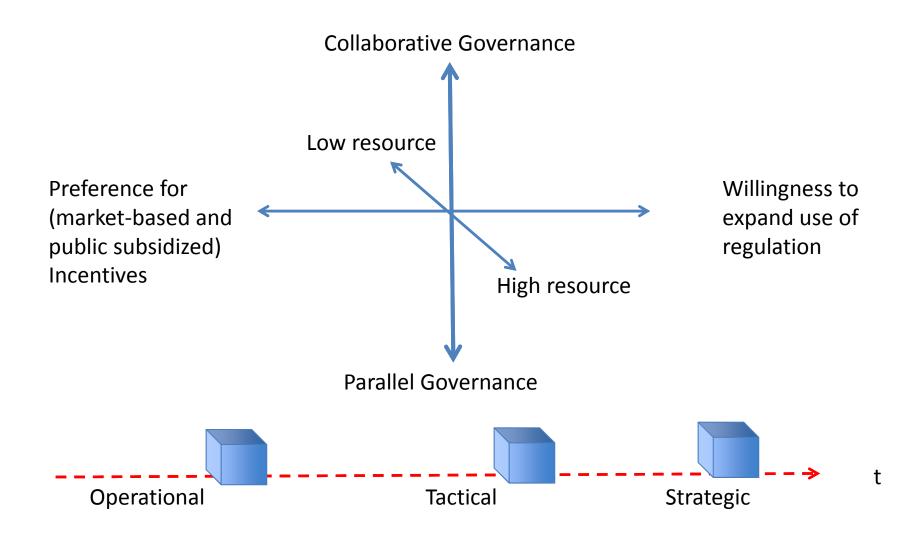

Business as usual

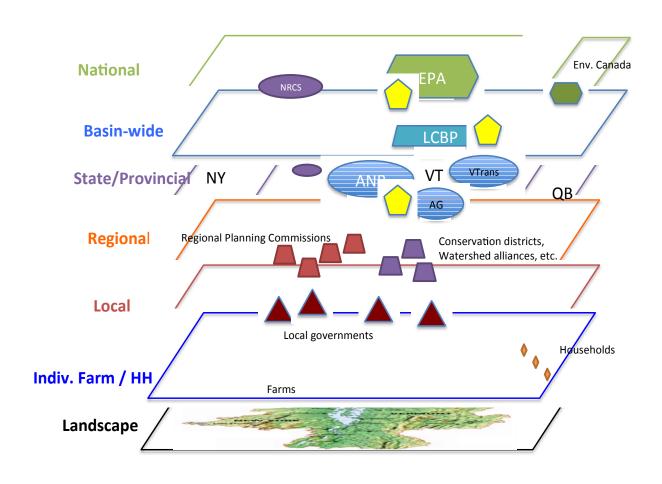
Double \$ for technical assistance

How are choices made using experimental economics?



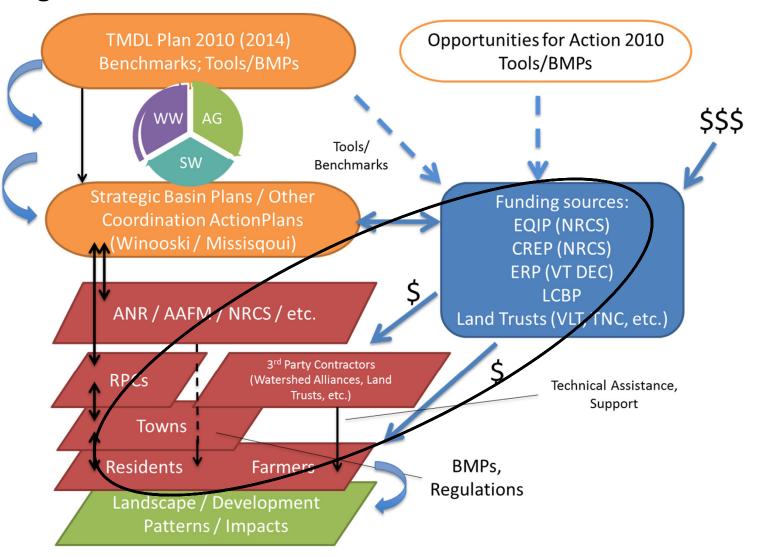



Q3's interests:


Mediated Modeling Workshop Framework:

Framework for thinking about today's scenario development exercise

Watershed Governance

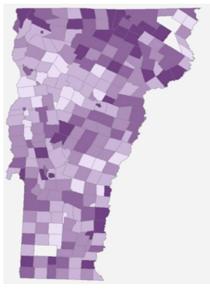


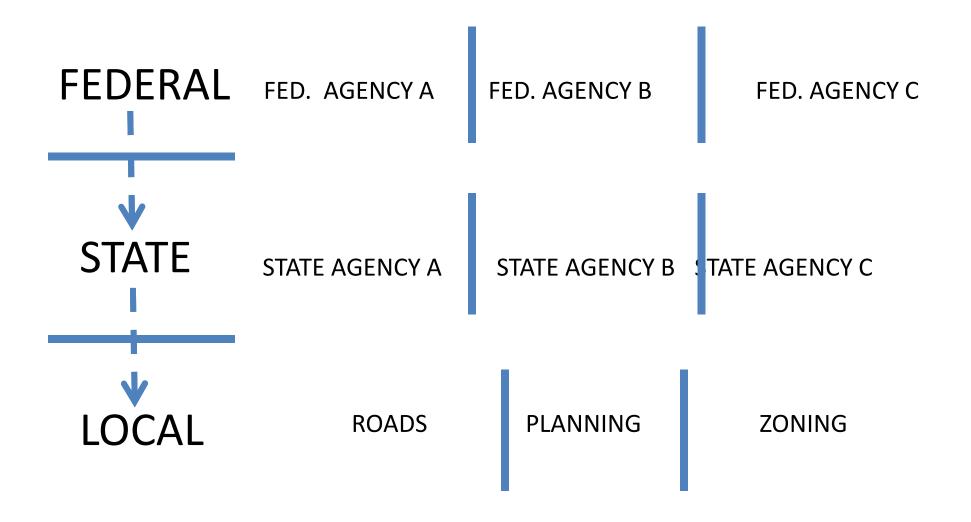
Fed (n=391) State (n=393) Region/County (n=387) Local (n=388) NGOs (n=383) Individuals (n=389) 20% 60% 0% 40% 80% 100% Most Responsible Least Responsible

Figure 7: Where does the responsibility lie for ensuring water quality?

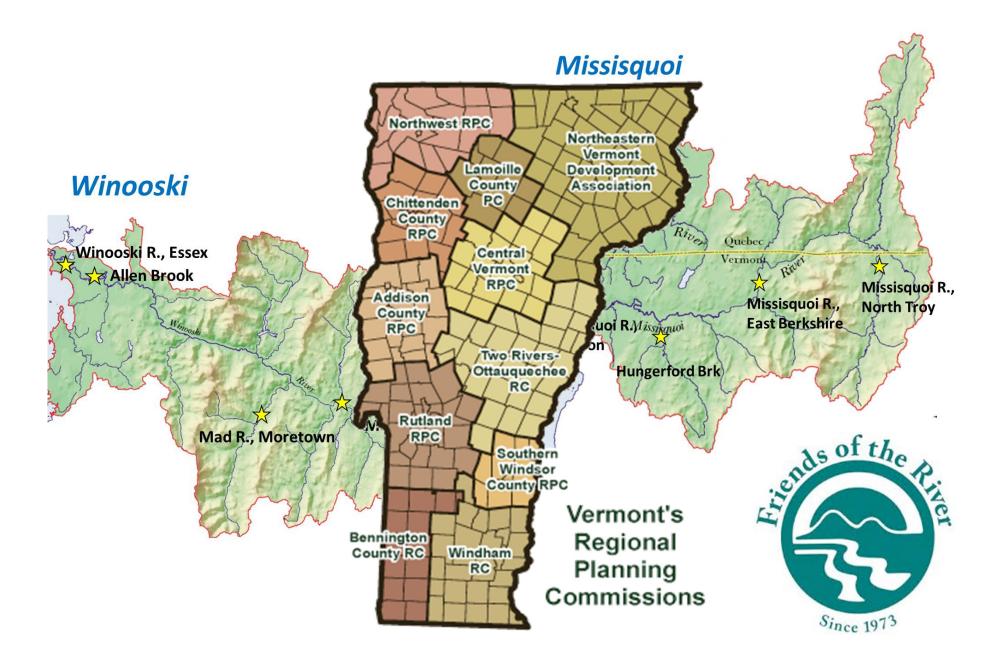
Source: Koliba et al. 2013 Vermont Water Quality Survey. University of Vermont

We are deepening our understanding of how water quality governed




Business as Usual (BAU) governance scenario for the LCB: **Parallel Governance**

"Parallel play"


Lines of parallel governance

Consequences of parallel governance?

- Tendency toward compartmentalized Federal and State Agencies
 - environmental agricultural trade-offs / technical assistance – regulation trade-offs
- Local government control over landuse and zoning decisions
 - Oftentimes, these local governments are fragmented themselves.

Alternative governance design: (Bio)Regionalism at the Watershed Level for Planning and Coordination

- Empowered civil society groups operating at regional scales vested with real resources and/or authority.
- Regional planning and implementation practices that take into account local variation.
- Watershed-level approaches to interventions that rely on the best science and technologies available.

FEDERAL

FEDERAL AGENCY A FEDERAL AGENCY B

FEDERAL AGENCY C

STATE

STATE AGENCY A

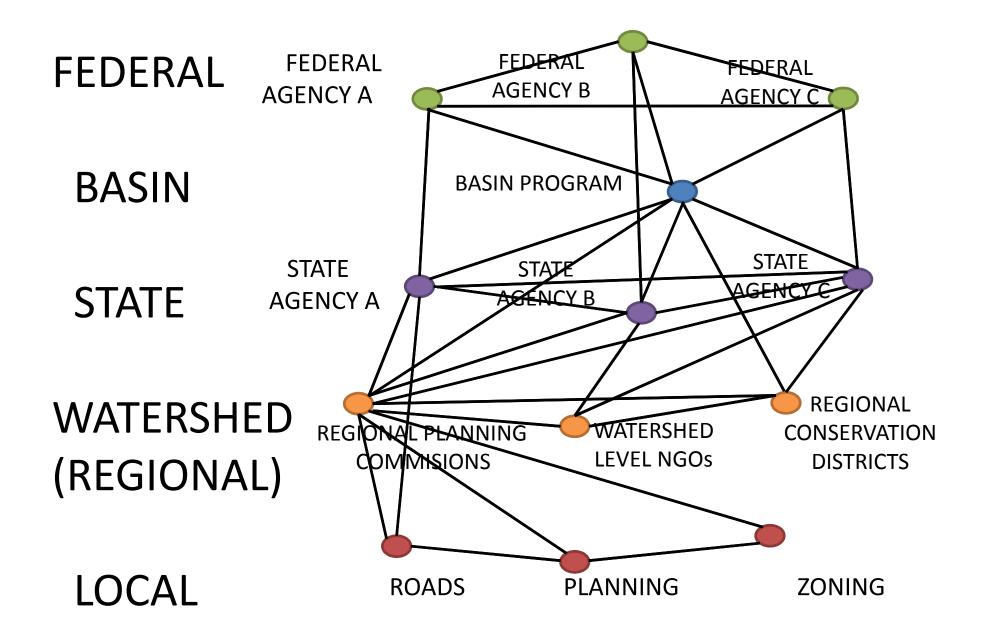
STATE AGENCY B STATE AGENCY C

LOCAL

ROADS

PLANNING

ZONING

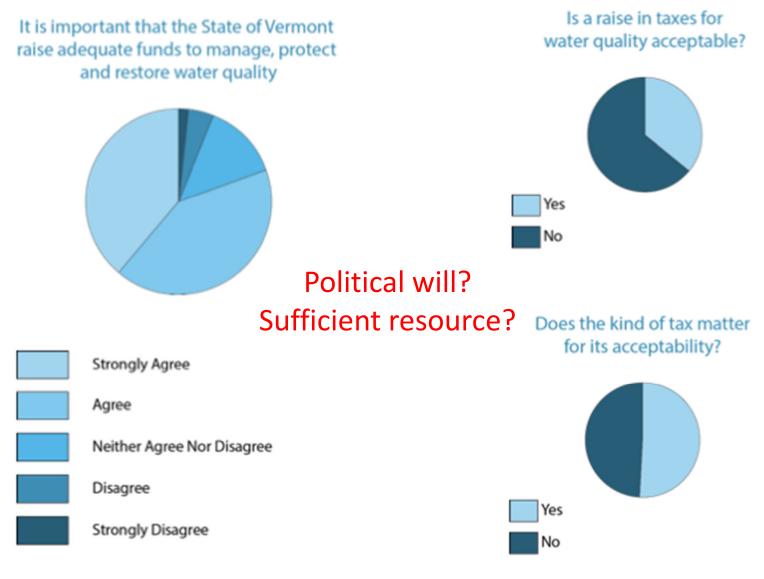

FEDERAL FEDERAL FEDERAL FEDERAL AGENCY B AGENCY A AGENCY C **BASIN BASIN PROGRAM STATE STATE STATE** AGENCY C **STATE AGENCY A AGENCY B REGIONAL** WATERSHED **WATERSHED REGIONAL PLANNING CONSERVATION LEVEL NGOs COMMISIONS DISTRICTS** (REGIONAL)

LOCAL

Resource Availability

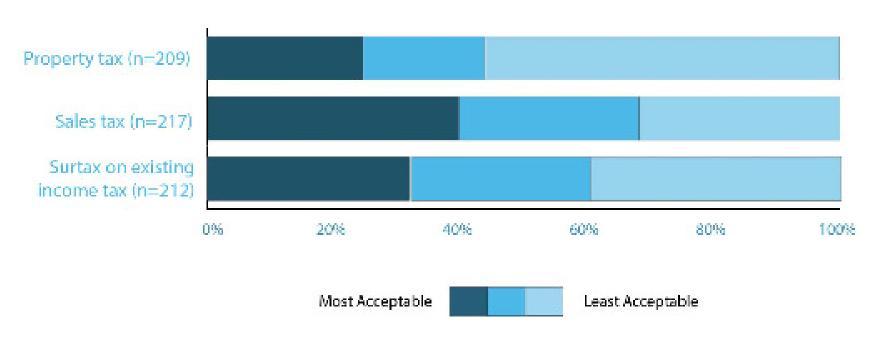
V

V.



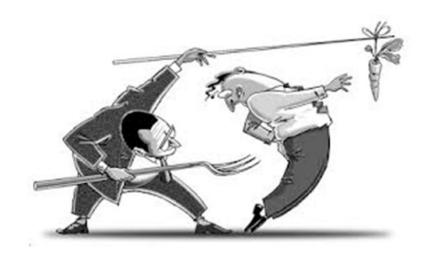
Where does money for water quality mitigation come from?

	Agency	Department	Program		
Vermont	AAFM	ARM	Agrichemical Management		
Vermont	AAFM	ARM	ARM Enforcement		
Vermont	AAFM	ARM	Engineering		
Vermont	AAFM	ARM	Laboratory		
Vermont	AAFM	ARM	Plant Industry		
Vermont	AAFM	ARM	Water Quality		
Vermont	ANR	DEC	Compliance & Enforcement		
Vermont	ANR	DEC	Enforcement Services		
Vermont	ANR	DEC	Connecticut Valley Flood Control Compact		
Vermont	ANR	DEC	Public Drinking Water Engineering and Financial Services		
Vermont	ANR	DEC	Public Drinking Water Operations/Compliance/ Planning		
Vermont	ANR	DEC	Indirect Discharge		
Vermont	ANR	DEC	Underground Injection Control		
Vermont	ANR	DEC	Regional Permits		
Vermont	ANR	DEC	Permit and Compliance Assistance		
Vermont	ANR	DEC	Pollution Prevention		
Vermont	ANR	DEC	Laboratory Services		
Vermont	ANR	DEC	ANR Engineering Services		
Vermont	ANR	DEC	Pollution Control Projects Implementation		
Vermont	ANR	DEC	Water System Project Implementation		
Vermont	ANR	DEC	Dam Safety		
Vermont	ANR	DEC	Vermont Geological Survey		
Vermont	ANR	DEC	Hazardous Waste		
Vermont	ANR	DEC	Sites Management		
Vermont	ANR	DEC	Hazardous Sites Settlement Accounts		
Vermont	ANR	DEC	Solid Waste		
Vermont	ANR	DEC	Hazardous Material Spills Response		
Vermont	ANR	DEC	Underground Storage Tanks		
Vermont	ANR	DEC	VT Agricultural Environmental Management (AEM) Program		
Vermont	ANR	DEC	Public Water System Resource Management		
Vermont	ANR	DEC	Lakes and Ponds		
Vermont	ANR	DEC	Surface Water Monitoring, Assessment & Watershed Planning		
Vermont	ANR	DEC	Riparian Corridor		
Vermont	ANR	DEC	Stormwater		
Vermont	ANR	DEC	Direct Discharge		
Vermont	ANR	DEC	Residuals		
Vermont	ANR	DEC	Wetlands		
Vermont	ANR	Fish & Wildlife	Fisheries		
Vermont	ANR	Fish & Wildlife	Law Enforcement		
Vermont	ANR	Fish & Wildlife	Outreach		
Vermont	ANR	Fish & Wildlife	Wildlife		


Jurisdiction Agency Department		Department	Program		
Vermont	ANR	FPR	Forest Product Utilization and Marketing		
Vermont	ANR	FPR	Private Forest Land Management		
Vermont	ANR	FPR	State Forest Land Management		
Vermont	ANR	FPR	Forest Resource Protection		
Vermont	ANR	FPR	Urban and Community Forestry		
Vermont	ANR	FPR	Lands Administration		
Vermont	ANR	FPR	State Park Operations		
Vermont	ANR	FPR	Forest Highway Maintenance		
Vermont	XTrans	Program Development	Better Backroads		
Vermont	VIrans	Environmental	Municipal Mitigation Grants		
Vermont	NRB	N/A	Land Use Panel		
Vermont	NRB	N/A	Water Resources Panel		
Federal	USDA	Farm Service Agency	Conservation Reserve Enhancement Program (CREP)		
Federal	USDA	Farm Service Agency	Conservation Reserve Program (CRP)		
Federal	USDA	NRCS	Farm and Ranch Lands Protection Program (FRPP)		
Federal	USDA	NRCS	Agricultural Management Assistance (AMA)		
Federal	USDA	NRCS	Environmental Quality Incentive Program (EQIP)		
Federal	USDA	NRCS	Wildlife Habitat Incentives Program (WHIP)		
Federal	USDA	NRCS	Conservation Technical Assistance (CTA)		
Federal	EPA	Office of Wastewater Management	National Pollutant Discharge Elimination System (NPDES)		
Federal	FEMA	N/A	National Flood Insurance Program (NFIP)		

60 + FEDERAL AND STATE PROGRAMS

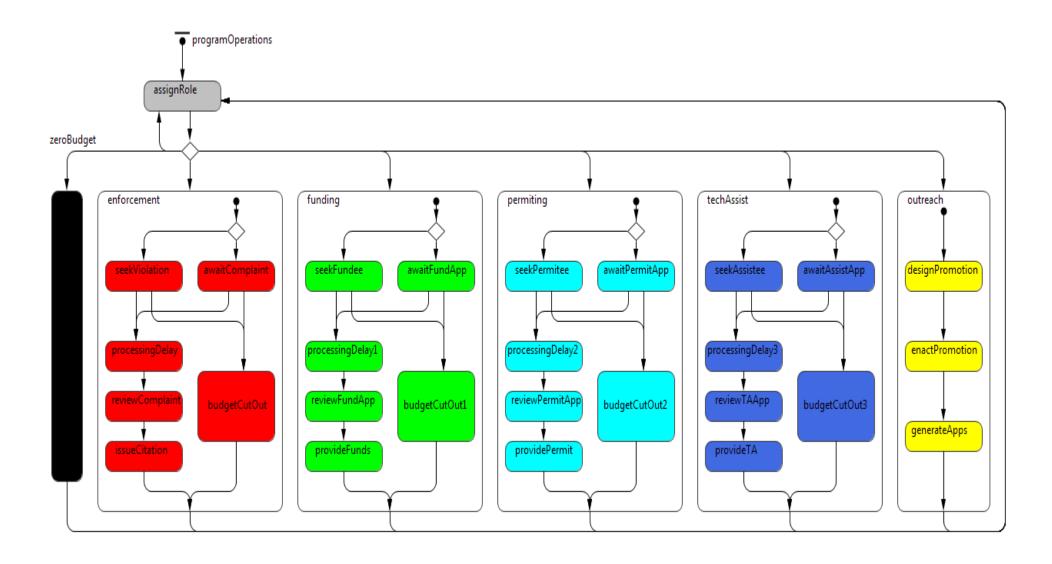
Source: Koliba et al. 2013 Vermont Water Quality Survey. University of Vermont


Figure 11: Acceptability of different kinds of taxes

Source: Koliba et al. 2013 Vermont Water Quality Survey. University of Vermont

Policy Preferences

 Policy tools are commonly grouped into two categories: incentives and regulations (e.g. carrots & sticks)


STICKS:

REGULATIONS SANCTIONS PERMITS

CARROTS:

INCENTIVES
TECHNICAL ASSISTANCE
PUBLIC INFORMATION/
EDUCATION

How are policy tools used to address water quality?

Evidence of policy preferences in the 2010 Opportunities for Action (OFA) Plan and the 2010 TMDL Implementation Plan

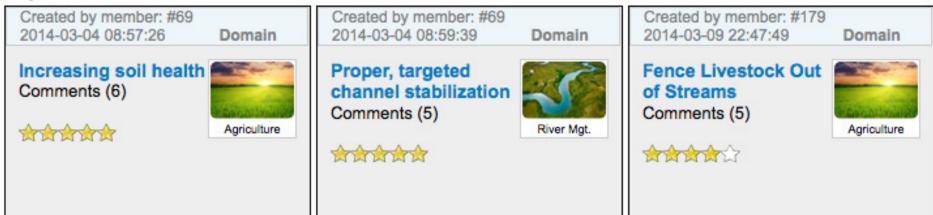
	OFA (192 tasks)		TMDL (249 tasks)	
	Count	Percent	Count	Percent
Economic Regulation	0	0.0	1	0.4
Environmental Regulation	42	21.9	48	19.3
Permits	9	4.7	14	5.6
Public Information	100	52.1	135	54.2
Contracts	6	3.1	6	2.4
Grants	35	18.2	36	14.5
Loan Guarantees	0	0.0	7	2.8
Tax Incentives	0	0.0	2	0.8
Policy Tools Utilized	192	100.0	249	100.0

Source: Koliba, C., Reynolds, A., Zia, A., and Scheinert, S. (accepted for publication). Isomorphic Properties of Network Governance: Comparing Two Watershed Governance Initiatives in the Lake Champlain Basin Using Institutional Network Analysis. *Complexity, Governance and Networks.* 1(2).

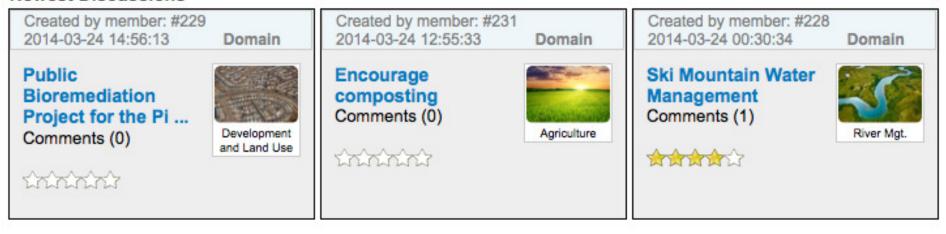
What interventions can be put in place to address the problem?

What kind of resources are needed?

Design using "crowdsourcing"


THE PURPOSE OF CSS2CC.ORG

- To deepen our capacity as a region to adapt to humaninduced climate change, and in particular to secure our region's water quality for the long term.
- To envision a wide array of intervention strategies for ensuring water quality for the Lake Champlain Basin
- To develop adaptation scenarios for stakeholder groups using a variety of simulation tools.



www.shutterstock.com - 450180

Popular Discussions

Newest Discussions

Logout

Introduction & Directions

Personal Information

Background Materials

My Interventions

All Interventions

General Discussions

BACKGROUND MATERIALS	*
REGIONAL RESOURCES TO CLIMATE CHANGE	*
FUTURE PROJECTIONS	*
HISTORICAL TRENDS	*
STAKEHOLDER GENERATED CLIMATE IMPACTS	×

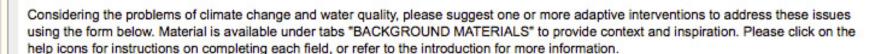
Logout

*

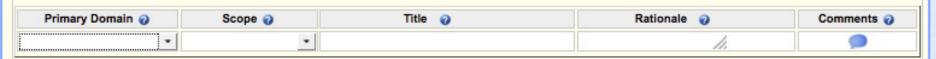
Introduction & Directions

Personal Information

Background Materials


My Interventions

All Interventions


Save

General Discussions

My Interventions: Envisioning climate change adaptation interventions

Chris Koliba's Interventions

Created by member: #208 2014-03-17 14:54:17 **Primary Domain** Let municipalities trade with other sectors to implement most beneficial mitigation measures Comments (1) Stormwater inininir Created by member: #81 2014-03-14 16:45:35 **Primary Domain** Green Infrastructure Retrofit of Existing Commercial & Industrial Sites Comments (2) 南南南南京 Stormwater Created by member: #179 2014-03-09 22:27:43 **Primary Domain** Controlling Polluted Runoff from Existing Developed Areas Through Regulation Comments (0) thinini Created by member: #134 2014-03-06 10:49:31 **Primary Domain** Promote low impact development and green infrastructure Comments (2) 南南南南南 Stormwater Created by member: #126 2014-03-05 20:58:19 Primary Domain culvert sizing Comments (2) 南南南南京 Created by member: #48 2014-03-03 14:00:17 **Primary Domain** Give Property Tax Incentives for Enhanced Stormwater/Runoff Management Comments (4) Stormwater 南南南南台

Tying these together through Integrated Assessment Models (IAM)

 Critical "Q3" concern: engaging stakeholders in IAM construction and use...

Thank you

Chris Koliba ckoliba@uvm.edu 802-656-3772

http://www.uvm.edu/~epscor/new02