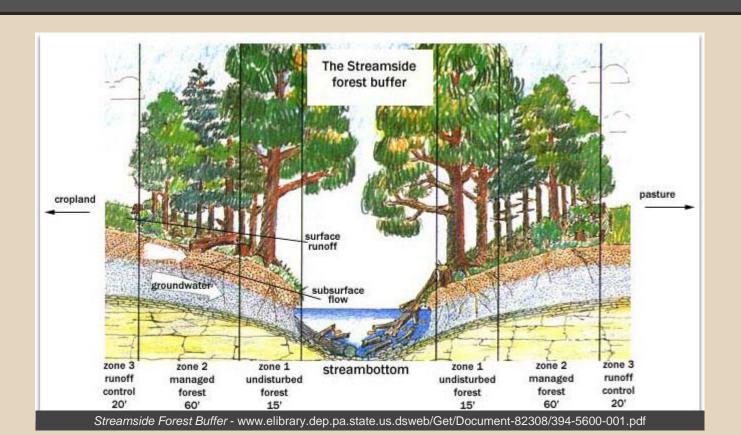
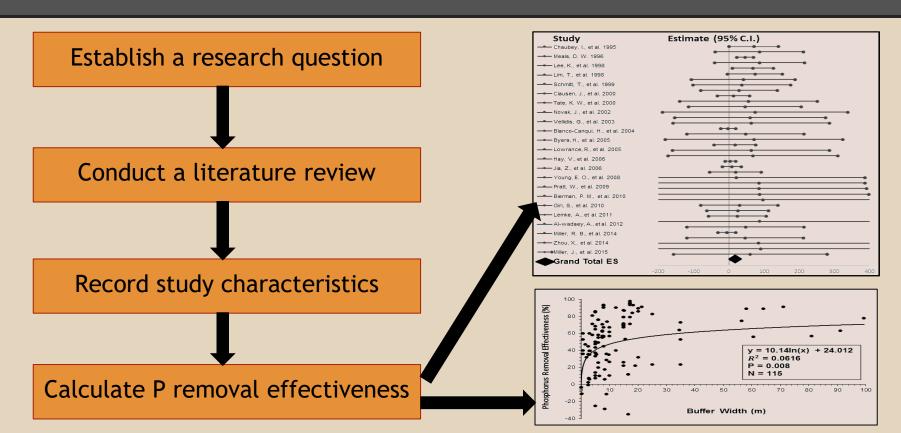
Phosphorus Removal in Agricultural Riparian Buffers: A Meta-Analysis

Hope Zabronsky, March 2016



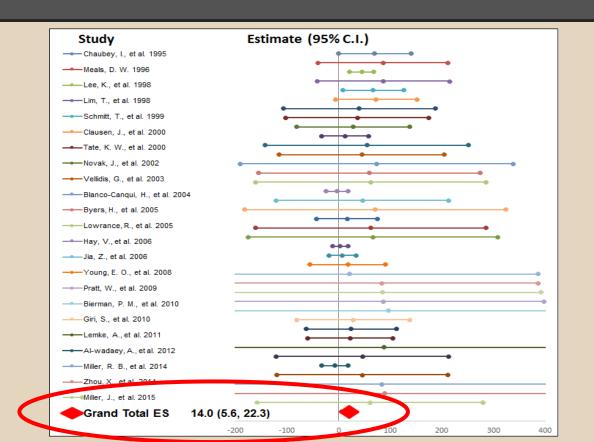
Introduction


Riparian Buffers

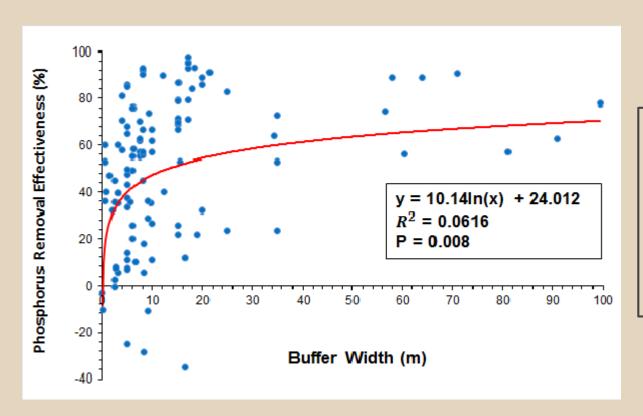
Why Meta-Analysis?

- To synthesize data from independent studies
- To identify factors that maximize P reduction
- To determine the most effect buffer designs

Meta-Analysis Procedures



Phosphorus Removal Effectiveness Varied Between and Within Studies


Table 1. Summary of riparian buffer effectiveness at removing P by vegetative cover, hydrologic flow path, buffer width, and soil type ("_" = data not provided by authors).

Study	Vegetative	Flow	Buffer	P	P removal	Major
	Cover	Path	Width	form	effectiveness	Soil Type
					(%)	
Chaubey, I., et al. 1995	Grass	Surface	3.1	TP	39.6	Silt
	Grass	Surface	6.1	TP	58.4	Silt
	Grass	Surface	9.2	TP	74	Silt
	Grass	Surface	15.2	TP	86.8	Silt
	Grass	Surface	21.4	TP	91.2	Silt
Meals, D. W. 1996	Grass	Surface	_	TP	86	Clay
Lee, K., et al. 1998	Grass	Surface	3	TP	39.5	Loam
	Grass	Surface	3	TP	35.2	Loam
	Grass	Surface	6	TP	55.2	Loam
	Grass	Surface	6	TP	49.4	Loam
Lim, T., et al. 1998	Grass	Surface	6.1	TP	76.1	Silt
	Grass	Surface	12.2	TP	90.1	Silt
	Grass	Surface	18.3	TP	93.6	Silt

Weighted Effect Size Means for all Studies

Regression Plot Buffer Effectiveness

Tsai, Y., H. Zabronsky, B. Beckage, A. Zia and C. Koliba. 2016. A Review of Phosphorus Retention in Riparian Buffers: An Application of Random-Effects Meta- and Multiple Regression Analyses. J. Environ. Qual. 1-29.

R-Squared = 0.569

Conclusion

- Wider buffers tended to attenuate more P
- Vegetative cover, soil type, and slope likely influenced P removal effectiveness
- Future studies should integrate multiple factors

Acknowledgments

- A special thanks to...
- Yushiou
- Q3 Mentors
- Q3 Interns
- * EPSCoR, RACC, CWDD, and NSF

Questions?

Literature Cited

LITERATURE CITED

- Chaubey, I., et al. (1995). "Effectiveness of vegetative filter strips in controlling losses of surface-applied poultry litter constituents." Transactions of the ASAE 38(6): 1687-1692.
- Meals, D. W. (1996). "Watershed-scale response to agricultural diffuse pollution control programs in Vermont, USA." Water Science and Technology 33(4): 197-204.
- Lee, K., et al. (1998). "Nutrient and sediment removal by switchgrass and cool-season grass filter strips in Central Iowa, USA." Agroforestry Systems 44(2-3): 121-132.
- Lim, T., et al. (1998). "Vegetated filter strip removal of cattle manure constituents in runoff." Transactions of the ASAE 41(5): 1375-1381.
- Schmitt, T., et al. (1999). "Filter strip performance and processes for different vegetation, widths, and contaminants." Journal of Environmental Quality 28(5): 1479-1489.
- Clausen, J., et al. (2000). "Water quality changes from riparian buffer restoration in
- Connecticut." Journal of Environmental Quality 29(6): 1751-1761.
 Eghball, B., et al. (2000). "Narrow grass hedge effects on phosphorus and nitrogen in runoff following manure and fertilizer application." Journal of Soil and Water Conservation 55(2): 172-176.
- Tate, K. W., et al. (2000). "Evaluation of buffers to improve the quality of runoff from irrigated pastures." Journal of Soil and Water Conservation 55(4): 473-478.
- Novak, J., et al. (2002). "Riparian zone impact on phosphorus movement to a Coastal Plain black water stream." Journal of Soil and Water Conservation 57(3): 127-133.
- Udawatta, R. P., et al. (2002). "Agroforestry practices, runoff, and nutrient loss." Journal of Environmental Quality 31(4): 1214-1225.
- Zaimes, G. N., & Schultz, R. C. (2002). Phosphorus in Agricultural Watersheds: A Literature Review. Ames: Iowa State University.
- Abu-Zreig, M., et al. (2003). "Phosphorus Removal in Vegetated Filter Strips." Journal of Environmental Quality 32(2): 613-619.
- Sharpley, A. N., Daniel, T., Sims, T., Lemunyon, J., Stevens, R., & Parry, R. (2003). Agricultural Phosphorus and Eutrophication. College Township: United States Department of Agriculture.
- Vellidis, G., et al. (2003). "Nutrient transport in a restored riparian wetland." Journal of Environmental Quality 32(2): 711-726.
- Blanco-Canqui, H., et al. (2004). "Grass barrier and vegetative filter strip effectiveness in reducing runoff, sediment, nitrogen, and phosphorus loss." Soil Science Society of America Journal 68(5): 1670-1678.
- Byers, H., et al. "VH (2005). Phosphorus, sediment, and Escherichia coli loads in unfenced streams of the Georgia Piedmont, USA." Journal of Environmental Quality 34: 2293-

- Sheppard, S. C., et al. (2006). "Runorr phosphorus retention in vegetated field margins on riat landscapes." Canadian Journal of Soil Science 86(5): 871-884.
- Dosskey, M., et al. (2007). "Change in filter strip performance over ten years." Journal of Soil and Water Conservation 62(1): 21-32.
- Mankin, K. R., et al. (2007). "Grass-Shrub Riparian Buffer Removal of Sediment, Phosphorus, and Nitrogen From Simulated Runoffl." JAWRA Journal of the American Water Resources Association 43(5): 1108-1116.
- Ryder, M. and A. Fares (2008). Evaluating Cover Crops (<u>Sudex</u>, <u>Sunn</u> Hemp, Oats) for Use as Vegetative Filters to Control Sediment and Nutrient Loading From Agricultural Runoff in a Hawaiian Watershed1, Wiley Online Library.
- Wagner, D., et al. (2008). "Managing biosolids runoff phosphorus using buffer strips enhanced with drinking water treatment residuals." Journal of Environmental Quality 37(4): 1567-1574.
- Young, E. O. and R. D. Briggs (2008). "Phosphorus concentrations in soil and subsurface water: A field study among cropland and riparian buffers." Journal of Environmental Quality 37(1): 69-78.
- Zaimes, G. N., et al. (2008). "Total phosphorus concentrations and compaction in riparian areas under different riparian land-uses of Iowa." Agriculture, ecosystems & environment 127(1): 22-30.
- Bhattarai, R., et al. (2009). "Nutrient transport through a vegetative filter strip with subsurface drainage." Journal of Environmental Management 90(5): 1868-1876.
- Duchemin, M. and R. Hogue (2009). "Reduction in agricultural non-point source pollution in the first year following establishment of an integrated grass/tree filter strip system in southern Quebec (Canada)." Agriculture Ecosystems & Environment 131(1-2): 85-97.
- Pratt, W. and T. Fox (2009). "Streamside management zones effectiveness for protecting water quality after forestland application of biosolids." Journal of Environmental Quality 38(5): 2106-2120.
- Bierman, P. M., et al. (2010). "Phosphorus runoff from turfgrass as affected by phosphorus fertilization and clipping management." Journal of Environmental Quality 39(1): 282-292.
- Borenstein, M., Hedges, L. V., Higgins, J. P., & Rothstein, H. R. (2010). A basic introduction to fixed-effect and random-effects models for meta-analysis. Wiley Online Library, 97-111.
- Giri, S., et al. (2010). "VEGETATIVE COVERS FOR SEDIMENT CONTROL AND PHOSPHORUS SEQUESTRATION FROM DAIRY WASTE APPLICATION FIELDS." Transactions of the <u>Asabe</u> 53(3): 803-811.
- Newbold, J. D., et al. (2010). "Water Quality Functions of a 15-Year-Old Riparian Forest Buffer System 1." Journal of the American Water Resources Association 46(2): 299-310.