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Historical Records

 Temperature:
+0.19 °C/decade
* Precipitation:
+0.12 mm/dy/decade
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Limited GCM use for extremes analysis without

additional steps: results from delta method for statistical

downscaling
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Use of extreme value statistics.

P.~GP(u(t,a,b),o(t,a,b),é&)

\ Shape parameter

Peak over

threshold

precipitation

Scale parameter
Covariates:

t: time (for variability)
a, b: climate indices
e.g. NAO, AO

Location parameter
Covariates:

t: time (for trend)
a, b: climate indices
e.g. NAO, AO



 Fitting the Pareto distribution to extreme values

0.03¢

Frequency

0.025

0.02

0.015

0.01

0.005

350

400

450



50th %ile Scale Shape

95th %ile

0.1

0.1

02

6.5

55

45

35

30

25

20

Seasonality of Generalized Pareto Distribution parameters, and
percentiles: higher extreme daily precipitation in summer
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Seasonality of Markov chain parameters: increased persistence in spring?
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Percent increase

Spring precipitation is becoming more persistent, and
summer precipitation is becoming more intense

Percentage increases since 1948 at Burlington Airport
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Precipitation trends over all Northeast meteorological stations (USHCN)
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Trends in Markov Chain parameters show increased precipitation

persistence in Northeastern US
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Geophysical Research Letters

RESEARCH LETTER
10.1002/2015GL063124

Key Points:

« Precipitation in the northeastern
United States is becoming more
persistent

« Precipitation in the northeastern
United States is becoming more
intense

+ Observed trends constitute an
important hydrological impact of
climate change

Supporting Information:
» Figure S1
» Table S1

Correspondence to:
J. Guilbert,
jguilber@uvm.edu

Characterization of increased persistence and intensity
of precipitation in the northeastern United States
Justin Guilbert®, Alan K. Betts?, Donna M. Rizzo', Brian Beckage®, and Arne Bomblies'

'School of Engineering, University of Vermont, Burlington, Vermont, USA, 2Atmospheric Research, Pittsford, Vermont, USA,
3Departmc—:‘nt of Plant Biology, University of Vermont, Burlington, Vermont, USA

Abstract we present evidence of increasing persistence in daily precipitation in the northeastern United
States that suggests that global circulation changes are affecting regional precipitation patterns. Meteorological
data from 222 stations in 10 northeastern states are analyzed using Markov chain parameter estimates to
demonstrate that a significant mode of precipitation variability is the persistence of precipitation events. We
find that the largest region-wide trend in wet persistence (i.e., the probability of precipitation in 1 day and given
precipitation in the preceding day) occurs in June (+0.9% probability per decade over all stations). We also
find that the study region is experiencing an increase in the magnitude of high-intensity precipitation events. The
largest increases in the 95th percentile of daily precipitation occurred in April with a trend of +0.7 mm/d/decade.
We discuss the implications of the observed precipitation signals for watershed hydrology and flood risk.




Spatial View

95th Percentile Precipitation Trend

Legend

95th Percentile Trend
Mean Precip [mm]
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A paleoclimate perspective: lake sediment cores from Ritterbush Pond,
Vermont. No clear connection of extremes with Little Ice Age, Medieval
Warm Period, or 8200 cal BP drying event from Greenland cores.
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Calendar Years Before AD 1950
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Site: Mad River Watershed, Vermont
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Flow [cfs]

Results from weather generator applied to Mad River, central Vermont.
100-year flows at Moretown gauge for year 2050:
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Flow Distributions

95th Percentile Future Realizations (blue) vs. Historical Record (black)
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Sediment is one of primary ways
nutrients are transported to
receiving waters

Large amounts of sediment
mobilized by

* Overland erosion

* Road erosion

* Streambank erosion/failure

(2012) State of the Lake Report, Lake
Champlain Basin Program.




Distributed Hydrology Soil Vegetation Model (DHSVM)
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BSTEM: Geotechnical Analysis
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Climate change, hydrology, new challenges

Image credit: Vermont Watershed Management Division

Image credit: Vermont Agency for Natural Resources

Image credit: Vermont Watershed Managem




Precipitation
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@QAGU PUBLICATIONS

Water Resources Research

RESEARCH ARTICLE

10.1002/2016WR019143

Key Points:

« Coupled model more inclusively
represents suspended sediment
mobilization in a watershed by
including stream bank erosion and
failure

« Modeled sediment using new
approach improves suspended
sediment representation at high
flows in a test watershed

« Inclusive modeling of sediment
mobilization will be important for
simulating watershed response to
climate shifts and land use change

Supporting Information:
« Supporting Information S1

Correspondence to:
J. ). Stryker,
jstryker@uvm.edu

Citation:

Stryker, J., B. Wemple, and A. Bomblies

(2017), Modeling sediment
mobilization using a distributed
hydrological model coupled with a
bank stability model, Water Resour.
Res., 53,2051-2073, doi:10.1002/
2016WR019143.

Modeling sediment mobilization using a distributed
hydrological model coupled with a bank stability model

J. Stryker? (=, B. Wemple?, and A. Bomblies?

'School of Engineering, University of Vermont, Burlington, Vermont, USA, 2Department of Geography, University of
Vermont, Burlington, Vermont, USA

Abstract in addition to surface erosion, stream bank erosion and failure contributes significant sediment
and sediment-bound nutrients to receiving waters during high flow events. However, distributed and
mechanistic simulation of stream bank sediment contribution to sediment loads in a watershed has not
been achieved. Here we present a full coupling of existing distributed watershed and bank stability models
and apply the resulting model to the Mad River in central Vermont. We fully coupled the Bank Stability and
Toe Erosion Model (BSTEM) with the Distributed Hydrology Soil Vegetation Model (DHSVM) to allow the
simulation of stream bank erosion and potential failure in a spatially explicit environment. We demonstrate
the model’s ability to simulate the impacts of unstable streams on sediment mobilization and transport
within a watershed and discuss the model’s capability to simulate watershed sediment loading under cli-
mate change. The calibrated model simulates total suspended sediment loads and reproduces variability in
suspended sediment concentrations at watershed and subbasin outlets. In addition, characteristics such as
land use and road-to-stream ratio of subbasins are shown to impact the relative proportions of sediment
mobilized by overland erosion, erosion of roads, and stream bank erosion and failure in the subbasins and
watershed. This coupled model will advance mechanistic simulation of suspended sediment mobilization
and transport from watersheds, which will be particularly valuable for investigating the potential impacts of
climate and land use changes, as well as extreme events.




