Climate Projections Team: Background and Approach

Brian Beckage1, Jonathan Winter2, Patrick Clemins1

1University of Vermont, 2Dartmouth College

May 25, 2017
BREE Climate Team Overarching Research Question

How will the frequency, intensity, and spatial scale of extreme weather events change this century?
What local climate feedbacks will evolve through altered surface reflectance and moisture fluxes?
Greenhouse Gas Concentrations Are Increasing

Source: USGCRP, 2009
Global Climate Models (GCMs) Predict Temperature and Precipitation

• GCMs solve the primitive equations (conservation of momentum, mass, and energy) to simulate fluid flow on a spherical surface
• Can be atmospheric (AGCM), oceanic (OGCM) or coupled atmospheric-oceanic general circulation models (AOGCM)
• AOGCMs are the core of full climate models
• Global spatial coverage
• Contain significant inaccuracies, coarse resolution
Downscaling GCMs

250 km (~2.5°)

12 km (~1/8°)
Temperature Will Increase

Source: Guilbert et al., 2014
Precipitation Is Likely to Increase

Source: Guilbert et al., 2014
Hot Days (> 90 °F) Will Increase

Source: Guilbert et al., 2014
Statistical Downscaling

- Downscale intermediately downscaled products from 12 km to 1 km
 1. Derive observed temperature and precipitation elevation adjustments from station data
 2. Translate variables to a reference elevation using adjustments and intermediate resolution DEM
 3. Interpolate data to increase spatial resolution
 4. Create high resolution variables by modifying interpolated data using adjustments and high resolution DEM

Source: Guilbert et al., 2014
Very High Resolution Output

- Daily average precipitation (top) and temperature (bottom)
- May 24, 1970
- Beijing Climate Center Climate System Model
- Bias Corrected Constructed Analogues (Brekke et al., 2013)
Very High Resolution Output: Burlington Temperature Histograms

- **ipsl_cm5a_lr**
 - Mean T = 7.088 °C

- **noresm1_m**
 - Mean T = 7.112 °C

- **cesm1_bgc**
 - Mean T = 7.137 °C

- **station**
 - Mean T = 7.127 °C
Very High Resolution Output: Burlington Precipitation Histograms

mean P = 2.482 mm/day

mean P = 2.48 mm/day

mean P = 2.477 mm/day

mean P = 2.403 mm/day
Means vs Extremes

N(0,1)
N(0.5,1)
Regional Climate Models (RCMs)

- RCMs are weather forecast models adapted to run at longer temporal scales or GCMs adapted to run at finer spatial scales
- High resolution: 2 to 4 km cells
- Limited spatial coverage, bounded by a large-scale atmospheric forcing generally provided by a GCM or reanalysis
- Can contain significant inaccuracies produced both by the large-scale forcing and the RCM itself
Methodology and Tasks

1. Calibrate the Weather Research and Forecasting (WRF) regional climate model and produce climate hindcasts driven by reanalysis and GCMs
2. Run WRF projections for end-of-century driven by GCMs
3. Bias correct and statistically process WRF simulations
4. Model extreme events using Extreme Value Theory
5. Assess albedo and land use change feedbacks on climate system
Statistical Processing and Analysis

- Bias correct and process RCM model runs incorporating station observations and reanalysis
- Reduce inaccuracies of RCM projections
- Incorporate historical information in model forecasts
- Increase spatial resolution: < 1km
- Climate projections constrained by observational record or extrapolations of observational record
Bias Correction and Spatial Disaggregation
Statistically process WRF simulations

• Activities
 - Evaluate WRFs ability to capture historical extremes (T, P)
 - Apply bias correction and spatial disaggregation
 - Map WRF simulations to historical extremes using extreme value theory
 - Evaluate model ability to capture extremes
 - Apply statistical models/mappings to future WRF runs
Calibrate WRF and Generate Hindcasts

• Team
 - PI Leads: Jonathan Winter, Brian Beckage, Janel Hanrahan
 - Students: Huanping Huang (GRA #9), GRA #8

• Sample Activities
 - Deploy WRF over Lake Champlain Basin using nesting to achieve resolution and coverage required by downstream applications
 - Run WRF forced with reanalysis and GCMs
 - Evaluate ability of WRF to simulate temperature and precipitation, including extreme events

• Facilities
 - Discovery (Dartmouth)
 - Babbage (UVM)
 - Cheyenne (NCAR)
Run WRF Future Climate Projections

• Team
 - PI Leads: Jonathan Winter, Brian Beckage, Janel Hanrahan
 - Students: GRA #9, GRA #8

• Sample Activities
 - Evaluate GCM hindcasts over the Lake Champlain Basin, select set of best GCMs for boundary conditions
 - Run WRF for two future time slices (e.g., 2035-2064, 2080-2099)
 - Apply bias correction and statistical processing
 - Analyze value added of dynamical downscaling via WRF to simulation of extreme events

• Facilities
 - Cheyenne (NCAR)
 - Leibnitz (UVM)
 - Discovery (Dartmouth)
Feedbacks to Regional Climate and IAM Integration

• Team
 - PI Leads: Brian Beckage, Jonathan Winter, Patrick Clemins
 - Students: GRA #8, GRA #9

• Sample Activities
 - Update forests across landscape (LPJ-GUESS) in response to regional climate
 - Incorporate updated urban landscape
 - Update WRF projections of regional climate in response to changed albedo and moisture fluxes
 - Support climate projections for downstream applications
 - IAM handles feedbacks between regional climate and other system components

• Facilities
 - Cheyenne (NCAR)
 - Babbage/Leibnitz (UVM)
Pegasus Downscaling Workflow for Integration with IAM

Preliminary: reading NCDF files in

- **COARSE-SCALE FOR T AND P**
 - apply lapse-rate to P and T and bring them down to reference elevation

- **COARSE-SCALE BASELINE FOR T AND P**
 - interpolation from coarse-grade to fine-grade at baseline elevation

- **FINE-SCALE BASELINE FOR T AND P**
 - apply lapse-rate to P and T and bring them to actual elevation

- **DOWNSCALED/FINE-SCALE FOR T AND P**
 - create the NetCDF files and write them to desk

- **GENERATE NCDF FILES**

Legend:
- Green: input
- Yellow: intermediate
- Brown: output
Bias Correction Using Constructed Analogs (BCCA)

Wood et al., 2006; Hidalgo et al., 2008
Very High Resolution Output:
Mt. Mansfield Temperature Histograms

Station Observations
Maurer Observations
BCCA

Station: 1.3 °C; Interpolation: 5.4 °C; Interpolation and Adjustment: 2.8 °C