The Effect of High Flow Events on N:P Ratio within the Missisquoi and Winooski Tributaries

Amanda Keilty Chelsea Cole Daniel Wilkinson

Robert Genter, Ph.D. and Saul Blocher

Methods

Schindler's Experiment: Lake 226

Leibig's Law of the Minimum

Research Questions

	Do concentrations change during high flow?	Do concentrations change related to land use?	
Ν			
Ρ			
N:P			
What are possible implications of any changes?			

N & P with Discharge

N:P with Discharge

Research Questions

	Do concentrations change during high flow?	Do concentrations change related to land use?		
Ν	Νο			
Ρ	Increase			
N:P	N:P decrease, Variation decrease			
What are possible implications of any changes?				

N & P with Land Use

N:P with Land Use

Research Questions

	Do concentrations change during high flow?	Do concentrations change related to land use?	
Ν	Νο	Νο	
Ρ	Increase	Νο	
N:P	N:P decrease, Variation decrease	Νο	
What are possible implications of any changes?			

Fairchild, Lowe, & Richardson (1985)

Achnanthidium minutissima Gomphonema tenellum Cocconeis placentula

Stigeoclonium tenue Naviculoids Anabaena sp. Epithemia adnate Rhopalodia gibba

Anabaena is N-fixing; Epithemia and Rhopalodia have N-fixing endosymbiotic algae

= Low N:P

Redfield Ratio, 16N: 1P molar

Thank you

Citations

Fairchild, GW, RL Lowe, & WB Richardson. 1985. Algal periphyton growth on nutrient-diffusing substrates: An *in-situ* bioassay. Ecology 66(2): 465-472.

University of Vermont Spatial Analysis Lab, 2007. Land Use/Land Cover for the Lake Champlain Basic, Circa 2001. <u>Burlington,</u> <u>Vermont 3</u>: 1-11.

Vermont Center for Geographic Information, Inc., United States Geological Survey (USGS), EROS Data Center, 2002. *ElevationDEM_DEM24*. <u>Sioux Falls, South Dakota</u> 2002: 1-6.

Funding provided by NSF Grant EPS 1101317

Just in Case

Just in Case Part 2

Single Isolated Peak

Time to Peak

Missisquoi Basin and Sub-basins

Mad River Focus Area

4 Watersheds in the Winooski Basin

