Vermont EPSCoR Publications and Products
Quantifying streambank erosion: a comparative study using an unmanned aerial system (UAS) and a terrestrial laser scanner. 2015 AGU (American Geophysical Union) Fall Meeting [Internet]. 2015 . Available from: https://agu.confex.com/agu/fm15/webprogram/Paper85568.html
. Quantifying streambank erosion using unmanned aerial systems at the site-specific and river network scales. In: Geo-Congress 2017 (Geotechnical Frontiers). Geo-Congress 2017 (Geotechnical Frontiers). Orlando, FL; 2017.
. Quantifying streambank movement and topography using unmanned aircraft system photogrammetry with comparison to terrestrial laser scanning. River Research and Applications [Internet]. 2017 ;33(8):1354 - 1367. Available from: http://doi.wiley.com/10.1002/rra.3183http://onlinelibrary.wiley.com/wol1/doi/10.1002/rra.3183/fullpdfhttp://api.wiley.com/onlinelibrary/chorus/v1/articles/10.1002%2Frra.3183https://api.wiley.com/onlinelibrary/tdm/v1/articles/10.1002%2Frra.3183
. Sediment Loading and Sources in the Mad River: Implications for sediment-bound nutrient management. IAGLR 2015 [Internet]. 2015 . Available from: http://www.iaglr.org/conference/downloads/2015_program.pdf
. Spatiotemporal Trajectories as a New Approach for Studying Concentration-discharge Relationships of Hydrological Events. 2018 AGU (American Geophysical Union) Fall Meeting [Internet]. 2018 . Available from: https://agu.confex.com/agu/fm18/meetingapp.cgi/Paper/378480
. Suspended Sediment Prediction. In: 2014 NEAEB. 2014 NEAEB. Burlington VT; 2014.
. Suspended Sediment Prediction Using Artificial Neural Networks and Local Hydrometeorological Data (M.S. Thesis). Burlington VT: University of Vermont; 2014.
. Suspended Sediment Prediction Using Artificial Neural Networks and Local Hydrometeorological Data. 2014 NEAEB Conference. 2014 .
. Unmanned Aircraft System (UAS) Photogrammetry for Tracking Streambank Erosion and Geomorphic Change along a Protected River Corridor. In: Eighth International Conference on Case Histories in Geotechnical Engineering. Eighth International Conference on Case Histories in Geotechnical Engineering. Philadelphia, PA: Geo-Institute of ASCE (American Society of Civil Engineers); 2019. Available from: https://ascelibrary.org/doi/10.1061/9780784482070.015
. Unraveling sediment dynamics in the Mad River watershed through event concentration-discharge relationships and multi-temporal UAS surveys. In: 2018 CERM (Catskill Environmental Research & Monitoring) Conference. 2018 CERM (Catskill Environmental Research & Monitoring) Conference. Highmount, NY: Ashokan Watershed Stream Management Program; 2018. Available from: http://ashokanstreams.org/wp-content/uploads/2016/09/5-Hamshaw_CERM2018.pdf
. Unraveling Sediment Dynamics Within Watersheds From Patterns in Suspended Sediment-Discharge Rrelationships. In: 2018 GSA (Geological Society of America) Northeastern Section 53rd Annual Meeting. 2018 GSA (Geological Society of America) Northeastern Section 53rd Annual Meeting. Burlington, VT: Geological Society of America (GSA); 2018. Available from: https://gsa.confex.com/gsa/2018NE/meetingapp.cgi/Paper/310311
. Using Distributed Continuous Turbidity Monitoring to Inform Sediment and Sediment-bound Nutrient Budgets in a Small Watershed. 2014 AGU (American Geophysical Union) Fall Meeting. 2014 .
. Using unmanned aircraft system (UAS) photogrammetry to monitor bank erosion along river corridors. In: Lake Champlain Research Conference. Lake Champlain Research Conference. Burlington, VT: Lake Champlain Basin Program; 2018. Available from: http://www.lcbp.org/water-environment/data-monitoring/lake-champlain-research-conference/
. Watershed data science at the event scale: Machine learning for event concentration-discharge analysis. Virtual Summit: Incorporating Data Science and Open Science Techniques in Aquatic Research [Internet]. 2020 . Available from: https://freshwaterecology.wordpress.com/2020/07/08/conference-workshop-virtual-summit-incorporating-data-science-and-open-science-techniques-in-aquatic-research/
. Watershed data science at the event scale: Revealing insights in watershed function through analysis of concentration-discharge relationships. In: 2020 AGU (American Geophysical Union) Fall Meeting. 2020 AGU (American Geophysical Union) Fall Meeting. Virtual: American Geophysical Union (AGU); 2020. Available from: https://agu.confex.com/agu/fm20/webprogram/Paper766889.html
.