Vermont EPSCoR Publications and Products


Search        
Export 524 results:
Author [ Title(Asc)] Type Year
Filters: First Letter Of Last Name is S  [Clear All Filters]
A B C D E F G H I J K L M N O P Q R S T U V W X Y Z 
U
McCarthy K, Sleeper R, Bowden WB, Schroth AW. Using Rhodamine Dye to Quantify Incoming Solar Radiation Along Streams with Heterogeneous Canopy Cover. 2015 NEWRnet Undergraduate Research Symposium. 2015 .
Fytilis N, Rizzo DM, Lamb RD, Kerans B, Stevens L. Using real-time PCR and Bayesian analysis to distinguish susceptible tubificid taxa important in the transmission of Myxobolus cerebralis, the cause of salmonid whirling disease. International Journal for Parasitology [Internet]. 2013 [cited 0BC];43(6):493 - 501. Available from: http://www.sciencedirect.com/science/article/pii/S0020751913000647
Vaughan M, Bowden WB, Shanley JB, Vermilyea A, Wemple B, Schroth AW. Using in situ UV‐Visible spectrophotometer sensors to quantify riverine phosphorus partitioning and concentration at a high frequency. Limnology and Oceanography: Methods [Internet]. 2018 ;16(12):840 - 855. Available from: https://aslopubs.onlinelibrary.wiley.com/doi/full/10.1002/lom3.10287
Vaughan M, Bowden WB, Shanley JB, Vermilyea A, Wemple B, Schroth AW. Using in situ UV‐Visible spectrophotometer sensors to quantify riverine phosphorus partitioning and concentration at a high frequency. Limnology and Oceanography: Methods [Internet]. 2018 ;16(12):840 - 855. Available from: https://aslopubs.onlinelibrary.wiley.com/doi/full/10.1002/lom3.10287
Vaughan M, Bowden WB, Vermilyea A, Shanley J, Wemple B, Schroth A. Using in situ UV-visible spectrophotometer sensors to predict phosphorus species concentrations in Lake Champlain tributaries. In: Lake Champlain Research Conference. Lake Champlain Research Conference. Burlington, VT: Lake Champlain Basin Program; 2018. Available from: http://www.lcbp.org/water-environment/data-monitoring/lake-champlain-research-conference/
Vaughan M, Bowden WB, Vermilyea A, Shanley J, Wemple B, Schroth A. Using in situ UV-visible spectrophotometer sensors to predict phosphorus species concentrations in Lake Champlain tributaries. In: Lake Champlain Research Conference. Lake Champlain Research Conference. Burlington, VT: Lake Champlain Basin Program; 2018. Available from: http://www.lcbp.org/water-environment/data-monitoring/lake-champlain-research-conference/
Xu Y, Smith S, Woo K. Using Complex Data to Understand Environmental Change in Great Lakes of the World. In: IAGLR's 58th Annual Conference on Great Lakes Research. IAGLR's 58th Annual Conference on Great Lakes Research. Burlington, VT; 2015.
Stockwell JD, Weber TC, Baukus AJ, Jech JM. On the use of omnidirectional sonars and downwards-looking echosounders to assess pelagic fish distributions during and after midwater trawling. ICES Journal of Marine Science. 2013 [cited 0BC];70(1):196 - 203.
Underwood KL, Hanley J, Rizzo DM, Sterle G, Harpold AA, Adler T, Li L, Wen H, Perdrial JN. Use of machine learning to extract patterns from long-term monitoring data across the US. ESA2020 (Harnessing the Ecological Data Revolution) [Internet]. 2020 . Available from: https://eco.confex.com/eco/2020/meetingapp.cgi/Paper/86651
Giles CD, Lee LG, Cade-Menun BJ, Rutila EC, Schroth AW, Xu Y, Hill JE, Druschel GK. The Use of Enzyme Hydrolysis to Assess the Seasonal Mobility and Bioavailability of Organic Phosphorus in Lake Sediments. In: American Geophysical Union, Fall Meeting 2013. American Geophysical Union, Fall Meeting 2013. San Francisco, CA; 2013.
Hamshaw SD, Dewoolkar MM, Schroth A, Wemple B, Rizzo DM. Unraveling Sediment Dynamics Within Watersheds From Patterns in Suspended Sediment-Discharge Rrelationships. In: 2018 GSA (Geological Society of America) Northeastern Section 53rd Annual Meeting. 2018 GSA (Geological Society of America) Northeastern Section 53rd Annual Meeting. Burlington, VT: Geological Society of America (GSA); 2018. Available from: https://gsa.confex.com/gsa/2018NE/meetingapp.cgi/Paper/310311
Sebestyen SD, Ross DS, Shanley JB, Elliott EM, Kendall C, Campbell JL, D. Dail B, Fernandez IJ, Goodale CL, Lawrence GB, et al. Unprocessed Atmospheric Nitrate in Waters of the Northern Forest Region in the U.S. and Canada. Environmental Science & Technology [Internet]. 2019 ;53(7):3620 - 3633. Available from: https://pubs.acs.org/doi/10.1021/acs.est.9b01276
Sebestyen SD, Ross DS, Shanley JB, Elliott EM, Kendall C, Campbell JL, D. Dail B, Fernandez IJ, Goodale CL, Lawrence GB, et al. Unprocessed Atmospheric Nitrate in Waters of the Northern Forest Region in the U.S. and Canada. Environmental Science & Technology [Internet]. 2019 ;53(7):3620 - 3633. Available from: https://pubs.acs.org/doi/10.1021/acs.est.9b01276
Sebestyen SD, Ross DS, Shanley JB, Elliott EM, Kendall C, Campbell JL, D. Dail B, Fernandez IJ, Goodale CL, Lawrence GB, et al. Unprocessed Atmospheric Nitrate in Waters of the Northern Forest Region in the U.S. and Canada. Environmental Science & Technology [Internet]. 2019 ;53(7):3620 - 3633. Available from: https://pubs.acs.org/doi/10.1021/acs.est.9b01276
Sebestyen SD, Ross DS, Shanley JB, Elliott EM, Kendall C, Campbell JL, D. Dail B, Fernandez IJ, Goodale CL, Lawrence GB, et al. Unprocessed Atmospheric Nitrate in Waters of the Northern Forest Region in the U.S. and Canada. Environmental Science & Technology [Internet]. 2019 ;53(7):3620 - 3633. Available from: https://pubs.acs.org/doi/10.1021/acs.est.9b01276
Sebestyen SD, Ross DS, Shanley JB, Elliott EM, Kendall C, Campbell JL, D. Dail B, Fernandez IJ, Goodale CL, Lawrence GB, et al. Unprocessed Atmospheric Nitrate in Waters of the Northern Forest Region in the U.S. and Canada. Environmental Science & Technology [Internet]. 2019 ;53(7):3620 - 3633. Available from: https://pubs.acs.org/doi/10.1021/acs.est.9b01276
Sebestyen SD, Ross DS, Shanley JB, Elliott EM, Kendall C, Campbell JL, D. Dail B, Fernandez IJ, Goodale CL, Lawrence GB, et al. Unprocessed Atmospheric Nitrate in Waters of the Northern Forest Region in the U.S. and Canada. Environmental Science & Technology [Internet]. 2019 ;53(7):3620 - 3633. Available from: https://pubs.acs.org/doi/10.1021/acs.est.9b01276
Block BD, Denfeld BA, Stockwell JD, Flaim G, Grossart H-PF, Knoll LB, Maier DB, North RL, Rautio M, Rusak JA, et al. The unique methodological challenges of winter limnology. Limnology and Oceanography: Methods [Internet]. 2018 ;17(1):42 - 57. Available from: https://aslopubs.onlinelibrary.wiley.com/doi/10.1002/lom3.10295
Block BD, Denfeld BA, Stockwell JD, Flaim G, Grossart H-PF, Knoll LB, Maier DB, North RL, Rautio M, Rusak JA, et al. The unique methodological challenges of winter limnology. Limnology and Oceanography: Methods [Internet]. 2018 ;17(1):42 - 57. Available from: https://aslopubs.onlinelibrary.wiley.com/doi/10.1002/lom3.10295
Block BD, Denfeld BA, Stockwell JD, Flaim G, Grossart H-PF, Knoll LB, Maier DB, North RL, Rautio M, Rusak JA, et al. The unique methodological challenges of winter limnology. Limnology and Oceanography: Methods [Internet]. 2018 ;17(1):42 - 57. Available from: https://aslopubs.onlinelibrary.wiley.com/doi/10.1002/lom3.10295
O'Malley BP, Dillon RA, Paddock RW, Hansson S, Stockwell JD. An underwater video system to assess abundance and behavior of epibenthic Mysis. Limnology and Oceanography: Methods [Internet]. 2018 ;16(12):868 - 880. Available from: https://aslopubs.onlinelibrary.wiley.com/doi/full/10.1002/lom3.10289
Sosa MDelpin, Burns W, Ruiz LEsbri, Schroth A, Kincaid D, Blocher S. Understanding the Community Dynamics, Timing, and Intensity of the 2017 and 2018 Cyanobacteria Blooms in Two Shallow Eutrophic Bays in Lake Champlain. ABRCMS 2019 (Annual Biomedical Research Conference for Minority Students) [Internet]. 2019 . Available from: http://www.abrcms.org/
Sosa MDelpin, Burns W, Ruiz LEsbri, Schroth A, Kincaid D, Blocher S. Understanding the Community Dynamics, Timing, and Intensity of the 2017 and 2018 Cyanobacteria Blooms in Two Shallow Eutrophic Bays in Lake Champlain. ABRCMS 2019 (Annual Biomedical Research Conference for Minority Students) [Internet]. 2019 . Available from: http://www.abrcms.org/
Betts AK, Desjardins RL. Understanding Land–Atmosphere–Climate Coupling Using Data from the Canadian Prairies. In: Shrestha DHim Lal Challenging Issues on Environment and Earth Science. Vol. 5. Challenging Issues on Environment and Earth Science. Book Publisher International (a part of SCIENCEDOMAIN International); 2021. pp. 32 - 59. Available from: https://stm.bookpi.org/CIEES-V5/article/view/1828
Betts AK, Desjardins R, Strunecka A. Understanding Land–Atmosphere–Climate Coupling from the Canadian Prairie Dataset. In: Prime Archives in Environmental Research. 1stst ed. Prime Archives in Environmental Research. Hyderabad, India: Vide Leaf; 2020. Available from: https://videleaf.com/wp-content/uploads/2020/09/Understanding-Land%E2%80%93Atmosphere%E2%80%93Climate-Coupling-from-the-Canadian-Prairie-Dataset.pdf

Pages