Vermont EPSCoR Publications and Products


Search        
Export 258 results:
Author [ Title(Asc)] Type Year
Filters: First Letter Of Last Name is W  [Clear All Filters]
A B C D E F G H I J K L M N O P Q R S T U V W X Y Z 
W
Merrill S, Moegenburg SM, Koliba C, Zia A, Trinity L, Clark EM, Bucini G, Wiltshire S, Sellnow T, Sellnow D, et al. Willingness to Comply With Biosecurity in Livestock Facilities: Evidence From Experimental Simulations. Frontiers in Veterinary Science [Internet]. 2019 ;6. Available from: https://www.frontiersin.org/articles/10.3389/fvets.2019.00156/full
Garibaldi LA, Steffan-Dewenter I, Winfree R, Aizen MA, Bommarco R, Cunningham SA, Kremen C, Carvalheiro LG, Harder LD, Afik O, et al. Wild Pollinators Enhance Fruit Set of Crops Regardless of Honey Bee Abundance. Science [Internet]. 2013 [cited 0BC];339(6127):1608 - 1611. Available from: http://www.sciencemag.org/content/339/6127/1608.full
Garibaldi LA, Steffan-Dewenter I, Winfree R, Aizen MA, Bommarco R, Cunningham SA, Kremen C, Carvalheiro LG, Harder LD, Afik O, et al. Wild Pollinators Enhance Fruit Set of Crops Regardless of Honey Bee Abundance. Science [Internet]. 2013 [cited 0BC];339(6127):1608 - 1611. Available from: http://www.sciencemag.org/content/339/6127/1608.full
Garibaldi LA, Steffan-Dewenter I, Winfree R, Aizen MA, Bommarco R, Cunningham SA, Kremen C, Carvalheiro LG, Harder LD, Afik O, et al. Wild Pollinators Enhance Fruit Set of Crops Regardless of Honey Bee Abundance. Science [Internet]. 2013 [cited 0BC];339(6127):1608 - 1611. Available from: http://www.sciencemag.org/content/339/6127/1608.full
Garibaldi LA, Steffan-Dewenter I, Winfree R, Aizen MA, Bommarco R, Cunningham SA, Kremen C, Carvalheiro LG, Harder LD, Afik O, et al. Wild Pollinators Enhance Fruit Set of Crops Regardless of Honey Bee Abundance. Science [Internet]. 2013 [cited 0BC];339(6127):1608 - 1611. Available from: http://www.sciencemag.org/content/339/6127/1608.full
Mohammed IN, Betts AK, Wemple B, Bomblies A. A wavelet analysis of northeastern climate and runoff regimes. Water Resources Research. Under Review .
Kaushal SS, Gold A, Bernal S, Johnson TANewcomer, Addy K, Burgin A, Burns DA, Coble AA, Hood E, Lu YH, et al. Watershed ‘chemical cocktails’: forming novel elemental combinations in Anthropocene fresh waters. Biogeochemistry [Internet]. 2018 ;141(3):281 - 305. Available from: https://link.springer.com/article/10.1007%2Fs10533-018-0502-6
Kaushal SS, Gold A, Bernal S, Johnson TANewcomer, Addy K, Burgin A, Burns DA, Coble AA, Hood E, Lu YH, et al. Watershed ‘chemical cocktails’: forming novel elemental combinations in Anthropocene fresh waters. Biogeochemistry [Internet]. 2018 ;141(3):281 - 305. Available from: https://link.springer.com/article/10.1007%2Fs10533-018-0502-6
Kaushal SS, Gold A, Bernal S, Johnson TANewcomer, Addy K, Burgin A, Burns DA, Coble AA, Hood E, Lu YH, et al. Watershed ‘chemical cocktails’: forming novel elemental combinations in Anthropocene fresh waters. Biogeochemistry [Internet]. 2018 ;141(3):281 - 305. Available from: https://link.springer.com/article/10.1007%2Fs10533-018-0502-6
Santana-Pruna V, Wemple B, Ross DS, Perillo VL. Watershed and Lake Bio-Geochemistry: Movement of Phosphorus and Sediments from Forested Areas into Water Bodies. 2016 American Institute of Chemical Engineers (AIChE) Annual Meeting [Internet]. 2016 . Available from: https://aiche.confex.com/aiche/2016/webprogram/Paper478749.html
U
Vaughan M, Bowden WB, Shanley JB, Vermilyea A, Wemple B, Schroth AW. Using in situ UV‐Visible spectrophotometer sensors to quantify riverine phosphorus partitioning and concentration at a high frequency. Limnology and Oceanography: Methods [Internet]. 2018 ;16(12):840 - 855. Available from: https://aslopubs.onlinelibrary.wiley.com/doi/full/10.1002/lom3.10287
Vaughan M, Bowden WB, Vermilyea A, Shanley J, Wemple B, Schroth A. Using in situ UV-visible spectrophotometer sensors to predict phosphorus species concentrations in Lake Champlain tributaries. In: Lake Champlain Research Conference. Lake Champlain Research Conference. Burlington, VT: Lake Champlain Basin Program; 2018. Available from: http://www.lcbp.org/water-environment/data-monitoring/lake-champlain-research-conference/
Hamshaw SD, Underwood KL, Rizzo DM, Wemple B, Dewoolkar MM. Using Distributed Continuous Turbidity Monitoring to Inform Sediment and Sediment-bound Nutrient Budgets in a Small Watershed. 2014 AGU (American Geophysical Union) Fall Meeting. 2014 .
Xu Y, Smith S, Woo K. Using Complex Data to Understand Environmental Change in Great Lakes of the World. In: IAGLR's 58th Annual Conference on Great Lakes Research. IAGLR's 58th Annual Conference on Great Lakes Research. Burlington, VT; 2015.
Stockwell JD, Weber TC, Baukus AJ, Jech JM. On the use of omnidirectional sonars and downwards-looking echosounders to assess pelagic fish distributions during and after midwater trawling. ICES Journal of Marine Science. 2013 [cited 0BC];70(1):196 - 203.
Underwood KL, Hanley J, Rizzo DM, Sterle G, Harpold AA, Adler T, Li L, Wen H, Perdrial JN. Use of machine learning to extract patterns from long-term monitoring data across the US. ESA2020 (Harnessing the Ecological Data Revolution) [Internet]. 2020 . Available from: https://eco.confex.com/eco/2020/meetingapp.cgi/Paper/86651
Mohammed IN, Bomblies A, Wemple B. The use of CMIP5 data to simulate climate change impacts on flow regime within the Lake Champlain Basin. Journal of Hydrology: Regional Studies [Internet]. 2015 ;3:160 - 186. Available from: http://linkinghub.elsevier.com/retrieve/pii/S2214581815000038
Hamshaw SD, Dewoolkar MM, Schroth A, Wemple B, Rizzo DM. Unraveling Sediment Dynamics Within Watersheds From Patterns in Suspended Sediment-Discharge Rrelationships. In: 2018 GSA (Geological Society of America) Northeastern Section 53rd Annual Meeting. 2018 GSA (Geological Society of America) Northeastern Section 53rd Annual Meeting. Burlington, VT: Geological Society of America (GSA); 2018. Available from: https://gsa.confex.com/gsa/2018NE/meetingapp.cgi/Paper/310311
Pearce AR, Rizzo DM, Watzin MC, Druschel GK. Unraveling Associations between Cyanobacteria Blooms and In-Lake Environmental Conditions in Missisquoi Bay, Lake Champlain, USA, Using a Modified Self-Organizing Map. Environmental Science & Technology [Internet]. 2013 [cited 0BC];47(24):14267 - 14274. Available from: http://pubs.acs.org/doi/pdf/10.1021/es403490g
Sebestyen SD, Ross DS, Shanley JB, Elliott EM, Kendall C, Campbell JL, D. Dail B, Fernandez IJ, Goodale CL, Lawrence GB, et al. Unprocessed Atmospheric Nitrate in Waters of the Northern Forest Region in the U.S. and Canada. Environmental Science & Technology [Internet]. 2019 ;53(7):3620 - 3633. Available from: https://pubs.acs.org/doi/10.1021/acs.est.9b01276
Sebestyen SD, Ross DS, Shanley JB, Elliott EM, Kendall C, Campbell JL, D. Dail B, Fernandez IJ, Goodale CL, Lawrence GB, et al. Unprocessed Atmospheric Nitrate in Waters of the Northern Forest Region in the U.S. and Canada. Environmental Science & Technology [Internet]. 2019 ;53(7):3620 - 3633. Available from: https://pubs.acs.org/doi/10.1021/acs.est.9b01276
Block BD, Denfeld BA, Stockwell JD, Flaim G, Grossart H-PF, Knoll LB, Maier DB, North RL, Rautio M, Rusak JA, et al. The unique methodological challenges of winter limnology. Limnology and Oceanography: Methods [Internet]. 2018 ;17(1):42 - 57. Available from: https://aslopubs.onlinelibrary.wiley.com/doi/10.1002/lom3.10295

Pages